

Advanced Design System 2011.01

Feburary 2011 DTV Design Library

© Agilent Technologies, Inc. 2000-2011

5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA

No part of this documentation may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Acknowledgments

Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other countries. Mentor products and processes are registered trademarks of Mentor Graphics Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation. Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat® are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. SystemC[®] is a registered trademark of Open SystemC Initiative, Inc. in the United States and other countries and is used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc.. HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights in and to the source code in its entirety, is owned by Hiroshima University and STARC. FLEXIm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project, Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg. QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open Software Foundation. Netscape is a trademark of Netscape Communications Corporation. Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of Minnesota", <u>http://www.cs.umn.edu/~metis</u>, METIS was written by George Karypis (karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

Advanced Design System 2011.01 - DTV Design Library ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are: 7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. unRAR copyright: The decompression engine for RAR archives was developed using source code of unRAR program. All copyrights to original unRAR code are owned by Alexander Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR compression algorithm, which is proprietary. Distribution of modified unRAR sources in separate form or as a part of other software is permitted, provided that it is clearly stated in the documentation and source comments that the code may not be used to develop a RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any modified version of AMD implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. AMD Availability: http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission. UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK (including versions 2.2.1 and earlier, in FORTRAN) is available at

http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0, originally released on Jan. 31, 2000, also available at

<u>http://www.cise.ufl.edu/research/sparse</u> . COLAMD V2.0 is also incorporated as a built-in function in MATLAB version 6.1, by The MathWorks, Inc. <u>http://www.mathworks.com</u> . COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at <u>http://www.netlib.org</u>). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3 is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright: Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt License: Your use or distribution of Qt or any modified version of Qt implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the

terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies.User

documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission."

Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Qt Availability: <u>http://www.qtsoftware.com/downloads</u> Patches Applied to Qt can be found in the installation at:

\$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property rights in and to the source code, is owned by Hiroshima University and/or STARC.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file names and directory names. The business entity formerly known as "HP EEsof" is now part of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and to maintain backward compatibility for our customers, we did not change all the names and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to being changed, without notice, in future editions. Further, to the maximum extent

permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this documentation and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license. Portions of this product include the SystemC software licensed under Open Source terms, which are available for download at http://systemc.org/. This software is redistributed by Agilent. The Contributors of the SystemC software provide this software "as is" and offer no warranty of any kind, express or implied, including without limitation warranties or conditions or title and non-infringement, and implied warranties or conditions merchantability and fitness for a particular purpose. Contributors shall not be liable for any damages of any kind including without limitation direct, indirect, special, incidental and consequential damages, such as lost profits. Any provisions that differ from this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Advanced Design System 2011.01 - DTV Design Library

5 1	10
	11
	12
	13
	17
5 1 5 7	16
	19
—	21
—	25
	27
DTV_ConvDecoder	29
DTV_ConvDecoder1_2	31
DTV_Delay	33
DTV_Demapper	34
DTV_DQPSKCoder	36
DTV_DQPSKDecoder	38
	39
	41
	43
	46
	48
—	50
	52
	54
= 11	58
	60
—	60 62
= · · · · · · · · · · · · · · · · · · ·	64
—	66
_ t	
$=$ \mathbf{c}	72
_ t	
_ t	76
	77
DTV_RSCoder	77
DTV_RSDecoder	82
DTV_ScrambleByte	86
DTV Design Examples	88
DVB-H System Design Examples	89
DTV DVB-H Hierarchical Transmission	90
DTV DVB-H Non-Hierarchical Transmission	93
DVB-T Receiver Design Examples	95
	97
DVB-T Digital Adjacent Channel Performance 1	101
DVB-T Impulse Interference Performance	
DVB-T Long Delay Channel Performance	
DVB-T Analog Adjacent Channel Performance	
DVB-T Analog Co-Channel Performance	
DVB-T Image Channel Performance	
DVB-T Rayleigh Channel (P1) Performance	
DVB-T Ricean Channel (F1) Performance	
DVB-T Receiver Minimum Input Level Sensitivity	
6	- 50

DVB-T Short Delay Channel Performance	142
DVB-T Single Echo Channel Performance	146
DVB-T System Design Examples	
DTV OFDM	151
DTV DVB System	168
ISDB-T System Design Examples	189
DTV ISDB Workspace Examples	190
DTV ISDB OFDM Workspace Example	200
DTV ISDB System Workspace Examples	227
DVB-H Components	273
DTV DVBHHierReceiver	
DTV_DVBHHierReceiver_RF	
DTV_DVBHHierSignalSrc	
DTV_DVBHHierSignalSrc_RF	
DTV DVBHInnerDeinterly	
DTV DVBHInnerInterly	
DTV_DVBHReceiver	
DTV DVBHReceiver RF	
DTV_DVBHSignalSrc	
DTV DVBHSignalSrc RF	
DTV_DVBHTPS	
DVB-T Components	
DTV CIRNorm	
DTV DVB2DChEstimator	
DTV_DVB2DChEstimator	
DTV_DVBBlcblockInteriv	
DTV_DVBChanner	
DTV_DVBCnEstimator	
DTV_DVBDemuxOFDMSym	
DTV_DVBMuxOFDMSym	
DTV_DVBSymDeinterlv2b	
DTV_DVBSymDeinterlv4b	
DTV_DVBSymDeinterlv6b	
DTV_DVBSymInterlv2b	
DTV_DVBSymInterlv4b	
DTV_DVBSymInterlv6b	
DTV_DVBSymInterlvCx	
DTV_DVBTHierReceiver	
DTV_DVBTHierReceiver_RF	
DTV_DVBTHierSignalSrc	
DTV_DVBTHierSignalSrc_RF	
DTV_DVBTImpulseNoise	
DTV_DVBTInnerDeInterlv	
DTV_DVBTInnerInterlv	394
DTV_DVBTOFDMDemod	396
DTV_DVBTOFDMMod	401
DTV_DVBTPS	405
DTV_DVBTPSDemod	409
DTV_DVBTPSMod	411
DTV_DVBTReceiver	413

DTV	_DVBTReceiver_RF	417
DTV	_DVBTSignalSrc	423
DTV	_DVBTSignalSrc_RF	426
DTV	_DVBTTPSGen	430
DTV	_DVBTTSPsource	435
DTV	_PALSource	437
ISDB-1	Γ Components	439
DTV	CarrierRotator	440
-	 CarrierScrambler	
-	CDSCDecoder	
-	ChEstimator	
-	DemuxCohSegs	
-	_DemuxDiffSegs	
-	DemuxTMCC	
-	InterSegInterly	
-	ISDBDemodulation	
-		
-		
-		
-	_ISDBModulation	
-	_ISDBMuxSegs	
-	_ISDBOFDMDemod_OneLay	
	_ISDBOFDMDemod_ThreeLay	
	_ISDBOFDMDemod_TwoLay	
	_ISDBOFDMMod_OneLay	
DTV	_ISDBOFDMMod_ThreeLay	489
DTV	_ISDBOFDMMod_TwoLay	492
DTV	_ISDBOneLayReceiver	495
DTV	_ISDBOneLayReceiver_RF	499
	ISDBOneLaySource	
-	ISDBPartialReceiver RF	
-	ISDBThreeLayReceiver	
-	ISDBThreeLayReceiver RF	
	_ISDBThreeLaySource	
	_ISDBThreeLaySource_RF	
-	ISDBTMCC	
-	ISDBTMCC	
-	—	
-	_ISDBTwoLayFreqDeinterlv	
-	_ISDBTwoLayFreqInterlv	
-	_ISDBTwoLayReceiver	
-	_ISDBTwoLayReceiver_RF	
-	_ISDBTwoLaySource	
-	_ISDBTwoLaySource_RF	
-	_LFSRCoder	
DTV	_LoadIFFTBuff	568
DTV	_MuxCohSegs	570
DTV	_MuxDiffSegs	575
DTV	_PackTMCC	580
DTV	TimeInterlv	582
-		
-	 TMCCInfo	
-	TMCCMod	
	8	_

Advanced Design System 2011.01 - DTV Design Library

Multiplex Components for DTV Design Library
DTV_CommCtrl2
DTV_CommCtrl3
DTV_DistCtrl2
DTV_DistCtrl3
DTV_SplitThreeLayData
DTV_SplitThreeLayTSP
DTV_SplitTwoLayData
DTV_SplitTwoLayTSP
DTV_SynLayTMCC1
DTV_SynLayTMCC2
DTV_SynLayTMCC3
DTV_SynThreeLayData
DTV_SynThreeLayTSP
DTV_SynTwoLayData
DTV_SynTwoLayTSP
OFDM Components
DTV_AddFixPhase
DTV_InsertGuard
DTV_LoadFFTBuff
DTV_MLEstimator
DTV_OFDMEqualizer
DTV_RemovePhase
Test Components for DTV Design Library 633
DTV_BER
DTV_PowerMeasure

About DTV Design Library

The Agilent EEsof DTV Design Library includes the current Japanese, and European HDTV standards for the Advanced Design System platform. This design library focuses on the transmission layer of the HDTV system and is intended to be a baseline system for designers to get an idea of what a nominal or ideal system performance would be. They also provide determination of degraded system performance due to system impairments that may include nonideal component performance.

ISDB-T System

The ISDB-T system has been designed to have the flexibility to send television or sound programs as digital signals while offering multimedia services in which a variety of digital information (video, sound, text and computer programs) can be integrated. It aims to make use of the advantages provided by terrestrial radio waves so that stable reception can be provided by compact, light and inexpensive mobile receivers in addition to integrated receivers used at home by using a BST(band segmented transmission)-OFDM scheme (see <u>Reference [1]</u>).

Two transmission bandwidths are prescribed (5.6 MHz and 432 kHz), each oriented to particular types of broadcasting services. The 5.6-MHz bandwidth is primarily for digital broadcasting of television programs; the 432-kHz bandwidth is primarily for audio programs. These two modes share all other parameters such as encoding format, multiplexing format, and OFDM carrier interval and frame configuration.

Terrestrial ISDB provides hierarchical transmission features using different carrier modulation schemes (DQPSK, QPSK, 16-QAM, 64-QAM) and internal encoding rates (1/2, 2/3, 3/4, 5/6, 7/8). This enables part of the band to be allocated to signals for stationary reception and the rest to signals for mobile reception; this means audio and data broadcasts for automobile and portable receivers can be performed simultaneously with television broadcasts for home use. Each hierarchical level can be set for each BST segment having a bandwidth of 432 kHz. Such information can be sent to receivers by TMCC (transmission and multiplexing configuration control) signal allocated to part of the OFDM carrier.

Because the wide and narrow bandwidths in terrestrial ISDB share the same OFDM parameters, the 5.6-MHz wide band can directly include the 432-kHz narrow band. Consequently, a 432-kHz receiver can receive some 5.6-MHz services, and a 5.6-MHz receiver can receive all services broadcast at 432 kHz.

Based on the system configuration, this design library may include three sub-libraries, transmission, receiving and channel coding sub-libraries.

DVB-T System

The DVB-T system was designed with the flexibility to adapt to all channels including clear channels and interleaved planning, and co-channel operation for the same program by different transmitters (single-frequency networks).

It also permits service flexibility, with the possibility of reception by roof-top antennae and portable reception, if necessary. Mobile reception is possible for QPSK and for higher modulation orders, as proven by extensive laboratory measurements and field trials under different channel conditions.

The system was also designed to be robust against interference from delayed signals, either echoes from terrain or buildings or signals from distant transmitters in a single frequency network, a new tool which it brings to TV service planning to improve spectrum efficiency which is necessary in the case of particularly crowded spectrum as it is the case in Europe.

The DVB-T compliant signals can also be carried over cables. However, the DVB-T specification is part of a family of specifications covering also satellite (DVB-S) and cable (DVB-C) operation. All use MPEG-2 coding for video and audio and MPEG-2 type of multiplexing. They have common features in the error protection strategy to be used. The main difference is the modulation method that is specific to the relevant bearer (satellite, cable, or terrestrial). The available data capacity is also different, as higher bit rates are offered on cable and satellite. However, transferring programs from one bearer to another is possible provided that the bit rate is available.

The DVB-T system features a number of selectable parameters so it can accommodate a large range of carrier-to-noise ratio and channel behavior, enabling fixed, portable, or mobile reception, with a trade-off in the usable bit rate. The range of parameters lets broadcasters select a mode appropriate to the application. For example, a very robust mode (with correspondingly lower payload) is needed to ensure portable reception. A moderately robust mode with a higher payload could be used where the service planning uses interleaved channels. The less robust modes with the highest payloads can be used if a clear channel is available for digital TV broadcasting.

The DVB-T system also provides additional features to support handheld terminals transmitting DVB-H services.

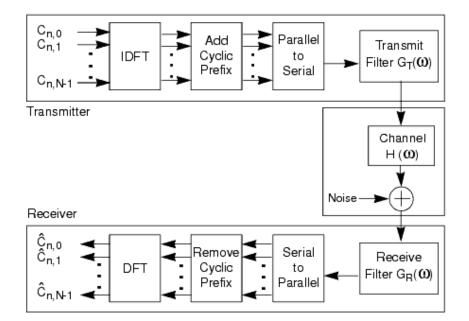
OFDM Technique

Multi-carrier, or orthogonal frequency-division multiplexing (OFDM), systems have gained in interest during the last years. It is used in the European digital broadcast radio system, and its use in wireless applications such as digital broadcast television and mobile communication systems is currently being investigated. By the name of discrete multitone (DMT) modulation, OFDM is also being examined for broadband digital communication on existing copper networks. The OFDM technique has been proposed for high bit-rate digital subscriber lines (HDSL) and for asymmetric digital subscriber lines (ADSL).

The OFDM concept is based on spreading the data to be transmitted over a large number of carriers, each being modulated at a low bit rate. The multiplex of carriers can be conveniently generated digitally using the inverse fast-Fourier-transform (FFT) process.

Preferred implementations of the FFT tend to be based on radix 2 or radix 4 algorithms, or some combination of radix 2 and 4. Example systems are based on 2048 (2k) carriers and 8192 (8k) carriers. However, the number of actual carriers transmitted is always smaller than the maximum number possible, as some carriers at either edge of the channel are not used. These unused carriers make a frequency guard band for practical IF filtering. The active carriers carry data or synchronization information. Any digital modulation scheme can be used to modulate the active carriers, for example, QPSK, n-QAM, where n is commonly 16 or 64.

OFDM, due to its multi-carrier nature, exhibits relatively long symbol periods. This long symbol period provides a degree of protection against inter-symbol interference caused by multi-path propagation. However, this protection can be greatly enhanced by use of the guard interval. The guard interval is a cyclic extension of the symbol, in simplistic terms a section of the start of the symbol is simply added to the end of the symbol.


OFDM, when coupled with appropriate channel coding (error correction coding), can achieve a high level of immunity against multi-path propagation and against co-channel interference, for example, NTSC, PAL, SECAM. OFDM systems also offer the broadcaster great flexibility as bit rates can be traded against level of protection depending on the nature of the service. For example, mobile reception of the OFDM signal may be possible given due consideration to factors including vehicle speed, carrier spacing, data rate and modulation scheme; whereas, for a service with fixed reception, high order modulation schemes and consequently high data rates could be used.

OFDM signals also allow the possibility of single-frequency network (SFN) operation. This is due to OFDM multi-path immunity. SFN operation is possible when exactly the same signal, in time and frequency, is radiated from multiple transmitters. In this case at any reception point in the coverage overlap between transmitters, the weakest received signals will act as post- or pre-echoes to the strongest signal. However, if the transmitters are far apart the time delay between the received signals will be large and the system will need a large guard interval.

While the use of the guard interval (or cyclic prefix) removes the effects of inter-symbol interference under multi-path conditions, it cannot remove the effects of frequency selective fading. Under these conditions the amplitude and phase of each subcarrier is distorted. If the OFDM receiver is to coherently demodulate the signal it must equalize the

Advanced Design System 2011.01 - DTV Design Library phase and amplitude of each carrier; this can be done after the FFT using a simple equalizer. This process is known as channel estimation and equalization. The basic OFDM system block diagram is shown below.

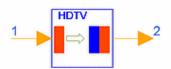
Basic OFDM Communication System

Glossary of Terms

Advanced Design System 2011.01 - DTV Design Library

	Advanced Design System 2011			
AC	Auxiliary channel			
ACI	Adjacent channel interference			
ACPR	Adjacent channel power ratio			
ADSL	Asymmetric digital subscriber lines			
AFC	Automatic frequency control			
ARIB	ssociation of Radio Industries and Business			
AWGN	dditive white gaussian noise			
BCH	Bose-Chaudhuri-Hocquenghem code			
BER	Bit error rate			
СР	Continual pilot			
CDSC	Complete differential set code			
DBPSK	Differential binary phase shift keying			
DQPSK	Differential quadrature phase shift keying			
DFT	Discrete Fourier transform			
DVB	Digital video broadcasting			
DVB-H	DVB-Handheld			
DVB-T	DVB-Terrestrial			
EDTV	Enhanced definition television			
ETS	European Telecommunication Standard			
EVM	Error vector magnitude			
FEC	Forward error correction			
FFT	Fast Fourier transform			
FIFO	First-in, First-out shift register			
HDSL	High bit-rate digital subscriber lines			
HDTV	High definition television			
HP	High-priority bit stream			
IFFT	Inverse fast Fourier transform			
ISDB-T	Terrestrial integrated services digital broadcasting			
LP	Low-priority bit stream			
MER	Modulation error ratio			
MPEG	Moving Picture Experts Group			
NTSC	National Television System Committee			
OFDM	Orthogonal frequency-division multiplexing			
PAL	Phase alternating line			
QAM	Quadrature amplitude modulation			
QPSK	Quadrature phase shift keying			
RS	Reed-Solomon			
SFN	Single frequency network			
SP	Scattered pilot			
TSP	Transport stream packet			
TS	Transport stream			
ТМСС	Transmission and multiplexing configuration control			
TPS	Transmission parameter signalling			
UHF	Ultra high frequency			
VHF	Very high frequency			

Advanced Design System 2011.01 - DTV Design Library


References

- 1. J. J. van de Beek, M. Sandell and P. O. Borjesson, "On Synchronization in OFDM Systems Using the Cyclic Prefix" In Proceedings of Radio Vetenskaplig Konferens (REVK'96), pp.663-667, Lulea, Sweden, June 1996.
- 2. M.Sandell, J.J. van de Beek and P.O.Borjesson, "Timing and Frequency Synchronization in OFDM Systems Using the Cyclic Prefix" In Proceedings of International Symmposium on Synchronization, pp.16-19, Essen, Germany, December 1995.
- 3. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 4. ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 5. ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

Channel Coding Components for DTV Design Library

- DTV BCHCoder (dtv)
- DTV BCHDecoder (dtv)
- DTV ConvCoder (dtv)
- DTV ConvCoder1 2 (dtv)
- DTV ConvDecoder (dtv)
- DTV ConvDecoder1 2 (dtv)
- DTV Delay (dtv)
- DTV Demapper (dtv)
- DTV DQPSKCoder (dtv)
- DTV DQPSKDecoder (dtv)
- DTV InnerDecoder (dtv)
- DTV InterlvFloat (dtv)
- DTV InterlvInt (dtv)
- DTV ISDBChCoder (dtv)
- DTV ISDBChDecoder (dtv)
- DTV ISDBDerandomize (dtv)
- DTV ISDBRandomize (dtv)
- DTV Mapper (dtv)
- DTV PNreset (dtv)
- DTV PuncCoder (dtv)
- DTV PuncConvCoder (dtv)
- DTV PuncConvDecoder (dtv)
- DTV PuncDecoder (dtv)
- DTV QAM16Coder (dtv)
- DTV QAM16Decoder (dtv)
- DTV QAM64Coder (dtv)
- DTV QAM64Decoder (dtv)
- DTV QPSKCoder (dtv)
- *DTV QPSKDecoder* (dtv)
- DTV RSCoder (dtv)
- DTV RSDecoder (dtv)
- DTV ScrambleByte (dtv)

DTV_BCHCoder

Description: BCH coder **Library:** DTV, Channel Coding **Class:** SDFDTV_BCHCoder

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
FieldOrder	order of Galois field	7	М		int	[3, 12]
InfoLength	information bit data length	113	К		int	[1, N)†
BlockLength	length of block code	127	N		int	[2**(M-1), 2**M)
ErrorNum	error protection capability	2			int	(0, 7]

⁺ InfoLength value depends on ErrorNum and BlockLength.

Pin Inputs

1 input input signal int

Pin Outputs

Pin	Name	Description	Signal Type
2	output	error protected output signal	int

Notes/Equations

- 1. This model performs shortened BCH error correcting encoding over the input signal. Each firing, K tokens are consumed at the input pin and N tokens are produced; N - K parity bits are generated and appended to the input signal to form the output.
- 2. Implementation
 - Add 0 bit to make the output signal block length up to $2^M 1$.
 - If the output signal block length is different with $(2^{**}M 1)$, the input signal block is added $(2^{**}M 1 N)$ bits which are set to zero, and consists of a new BCH code length $2^{M} 1$.
 - Calculate the output BCH code by field generator polynomial g(x).
 - Calculate the coefficients of redundancy polynomial b(x). The redundancy polynomial b(x) is the remainder after dividing $(x^{N-K} \times data(x))$ by the generator polynomial g(x).
 - The output BCH $(2^{M} 1, 2^{M} 1 N + K)$ code polynomial is $A(x) = x^{N-k} \times data(x) + b(x)$ where data(x) denotes information bits data polynomial

19

Advanced Design System 2011.01 - DTV Design Library

A(x) denotes the output data polynomial

- b(x) denotes redundancy polynomial
- The added 0 bits are deleted from the BCH $(2^{M} 1, 2^{M} 1 N + K)$ and the output shortened BCH(N,K) code is determined.
- 3. DVB-T Primitive and Generation Polynomials For DVB-T, the shortened BCH(67,53) is derived from BCH(127,113). The shortened BCH code is implemented by adding 60 bits, all set to zero, before the information bits input of a BCH(127,113, t = 2) encoder. After BCH encoding, these null bits are discarded, leading to a BCH code word of 67 bits.

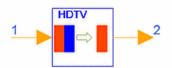
For the primitive polynomial

 $P(x) = x^7 + x^3 + 1$

For the generation polynomial

 $q(x) = x^{14} + x^9 + x^8 + x^6 + x^5 + x^4 + x^2 + x + 1$

The primitive polynomials of BCH codes based on FieldOrder values are given in the table below.


Primitive Polynomial of BCH Coding

FieldOrder	Primitive Polynomial
3	$P(x) = x^3 + x + 1$
4	$P(x) = x^4 + x + 1$
5	$P(x) = x^5 + x^2 + 1$
6	$P(x) = x^6 + x + 1$
7	$P(x) = x^7 + x^3 + 1$
8	$P(x) = x^8 + x^6 + x^5 + x^4 + 1$
9	$P(x) = x^9 + x^4 + 1$
10	$P(x) = x^{10} + x^3 + 1$
11	$P(x) = x^{11} + x^2 + 1$
12	$P(x) = x^{12} + x^7 + x^4 + x^3 + 1$

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_BCHDecoder

Description: BCH decoder **Library:** DTV, Channel Coding **Class:** SDFDTV_BCHDecoder

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
FieldOrder	order of Galois field	7	М		int	[3, 12]
InfoLength	information bit data length	113	К		int	[1, N) †
BlockLength	length of block code	127	N		int	[2**(M-1), 2**M)
ErrorNum	error protection capability	2			int	(0, 7]

⁺ InfoLength value depends on ErrorNum and BlockLength.

Pin Inputs

1 input input signal int

Pin Outputs

Pin	Name	Description	Signal Type
2	output	decoded signal	int

Notes/Equations

- 1. This model performs BCH error correcting decoding over the input signal. After decoding, N tokens are consumed at the input pin and K tokens are produced each firing.
- 2. Implementation

When input data is shortened BCH code at the start of decoding, the input signal block is added $(2^{**}M-1-N \text{ bits})$ and consists of BCH $(2^{**}M-1, 2^{**}M-1-N+K)$ code. After decoding, the padded bits are discarded.

Syndrome Concept

How can a receiver know the occurrence of one or more errors during transmission/storage of an encoded block, given only the generator polynomial g(D) and the received code word y represented by its polynomial (D)?

The answer is to become familiar with *syndromes*, which indicate an erroneous situation. Suppose code word x(D) is transmitted and we receive y(D). We can write y(D) = X(D) + e(D) where e(D) represents the polynomial corresponding to the error that occurred during transmission.

Now we have a simple procedure for checking the occurrence of errors at the receiver:

transform the received code word y into its polynomial representation y(D);

calculate
$$S(i) = y(a^i) = e(a^i)$$
 for $i = 1, ..., 2t$;

if one or more S(i) values are not equal to zero, one or more symbol errors have occurred in the block.

Now we know if there are errors in the received block, but we do not know how many bits are affected, or the position of the errors. The location of symbol errors in a block is determined by the construction of another polynomial, the *error locator* A(D). Given the 2t syndromes S(i), the decoding algorithm will try to synthesize a polynomial of which the coefficient values indicate the error positions. This is done as follows. Let *n* errors occur in locations j1, j2, ..., jn of a block, where $0 \le j0 < j1 < ... < jn < N$. Then the error polynomial e(D) is:

$$e(D) = D^{jn} + D^{jn-1} + \dots + D^{j1}$$

Define the error locator X(I) by $X_I = a^{jI} I = 1, 2, ..., n$

Then the syndromes can be expressed in terms of these error locators:

$$S(i) = e(a^{i}) = X_{n}^{i} + X_{n-1}^{i} + \dots + X_{1}^{i} = 1, \dots, 2t$$

We now construct the error locator polynomial A(D) as follows:

$$\begin{split} A(D) &= (1 + X_1 D)(1 + X_2 D) \dots (1 + X_n D) \\ &= A_0 + A_1 D + A_2 D^2 + \dots + A_n D^n \end{split}$$

This polynomial is the *error locator polynomial* since the inverses of its roots, X(I) (I = 1, ..., n), yield the error locations.

To construct A(D), this model uses the Massey-Berlekamp algorithm, which forms the key to decoding BCH code. The algorithm is more generally applicable for synthesizing linear shift feedback registers generating a predefined output sequence. For the Massey-Berlekamp Algorithm an iterative table is filled as shown in the table below.

Berlekamp Iterative Table

$^{\mu}A^{(\mu)}(D)$	d_{μ}	l_{μ}	$\mu - l_{\mu}$
-1 1	1	0	-1
0 1	S ₁	0	0
1			
2			
2t			

where μ is the iterative step number, $d \mu$ is the μ th step iterative difference, $I \mu$ is the order of $A^{(\mu)}(D)$.

If $d \mu = 0$, then $A_{\mu}^{(\mu+1)}(D) = A_{\mu}^{(\mu)}(D)$ and

 $l_{\mu+1} = l_{\mu}$

If $d \mu \neq 0$, search for lines in the table to find step ρ in which $d\rho \neq 0$ and the value of ρ - $I \rho$ is the maximum, then

$$A^{(\mu+1)}(D) = A(D) - d_{\mu}d_{\rho}^{-1}D^{(\mu-\rho)}\Omega^{(\rho)}(D)$$

and

$$l_{\mu+1} = max(l_{\mu}, l_{\rho} + \mu - \rho)$$

For the two conditions

$$d_{\mu+1} = s_{\mu+2} + A_1^{(\mu+1)} s_{\mu+1} + \dots + A_{l_{\mu}+1}^{(\mu+1)} s_{\mu+2-l_{\mu+1}}$$

Iterate until the last line of the table $A^{(2t)}(D)$ is determined. If the order of the polynomial is greater than t, which means the received code word block has more than *t* errors, the errors cannot be corrected.

To decode binary BCH code, it is sufficient to know the position of bit errors in a block and make the bit value inverse.

3. DVB-T Primitive and Generation Polynomials

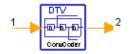
For DVB-T, the shortened BCH(67,53) is derived from BCH(127,113). The shortened BCH code is implemented by adding 60 bits, all set to zero, before the information bits input of a BCH(127,113, t = 2) encoder. After BCH encoding, these null bits are discarded, leading to a BCH code word of 67 bits. For the primitive polynomial

$$P(x) = x^7 + x^3 + 1$$

For the generation polynomial

$$g(x) = x^{14} + x^9 + x^8 + x^6 + x^5 + x^4 + x^2 + x + 1$$

The primitive polynomials of BCH codes based on FieldOrder values are listed in the table below.


Primitive Polynomials of BCH Coding

FieldOrder	Primitive Polynomial
2	$P(x) = x^2 + x + 1$
3	$P(x) = x^3 + x + 1$
4	$P(x) = x^4 + x + 1$
5	$P(x) = x^5 + x^2 + 1$
6	$P(x) = x^6 + x + 1$
7	$P(x) = x^7 + x^3 + 1$
8	$P(x) = x^8 + x^6 + x^5 + x^4 + 1$
9	$P(x) = x^9 + x^4 + 1$
10	$P(x) = x^{10} + x^3 + 1$
11	$P(x) = x^{11} + x^2 + 1$
12	$P(x) = x^{12} + x^7 + x^4 + x^3 + 1$
13	$P(x) = x^{13} + x^4 + x^3 + x + 1$
14	$P(x) = x^{14} + x^{12} + x^{11} + x + 1$
15	$P(x) = x^{15} + x + 1$
16	$P(x) = x^{16} + x^5 + x^3 + x^2 + 1$
17	$P(x) = x^{17} + x^3 + x$
18	$P(x) = x^{18} + x^7 + x$
19	$P(x) = x^{19} + x^6 + x^5 + x + 1$
20	$P(x) = x^{20} + x^3 + 1$

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

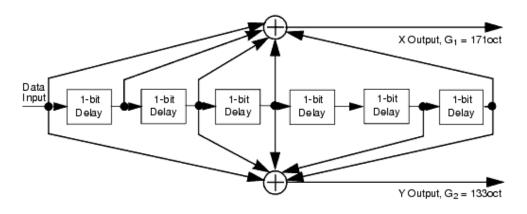
DTV_ConvCoder

Description: Convolutional coding the input bits **Library:** DTV, Channel Coding **Class:** SDFDTV_ConvCoder

Pin Inputs

Pin	Name	Description	Signal Type
1	input	bits to be coded	int

Pin Outputs


Pin	Name	Description	Signal Type
2	output	coded bits	int

Notes/Equations

1. This model performs normal convolutional encoding of data rate 1/2 over the input signal.

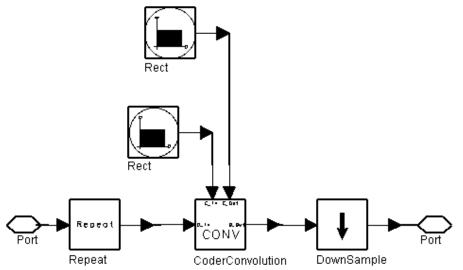
Each firing, 1 token is consumed at the input and 2 tokens are produced. The encoder is shown below.

References

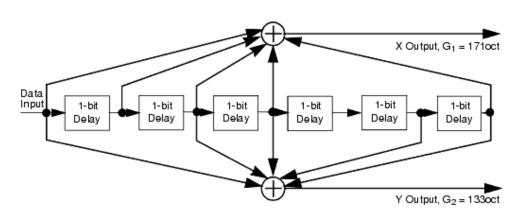
1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

Advanced Design System 2011.01 - DTV Design Library

Description: DTV convolutional encoder for 1/2 rate **Library:** DTV, Channel Coding **Class:** SDFDTV_ConvCoder1_2


Pin Inputs

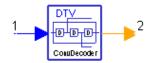
Pin	Name	Description		Signal 1	Гуре	
1	input	signal to be encoded int				
	<u> </u>					
Pin	Output	S				
		s Description	Sign	al Type		


Notes/Equations

1. This subnetwork model performs normal convolutional encoding of data rate 1/2 over the input signal. Each firing, 1 token is consumed at the input and 2 tokens are produced. The schematic for this subnetwork is shown below.

DTV_ConvCoder1_2 Subnetwork

2. This subnetwork uses a general convolutional coding model to encode the input data into mother convolutional code of data rate 1/2. The encoder is shown below.



Mother Convolutional Code of Rate 1/2 (Constraint Length=7)

References

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept. 1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_ConvDecoder

Description: Bit by bit viterbi decoder for DTV convolutional code Library: DTV, Channel Coding Class: SDFDTV_ConvDecoder Derived From: DTV_ConvDecoder_base

Parameters

Name	Description	Default	Unit	Туре	Range
TrunLen	path memory truncation length (bytes)	10		int	[5, ∞)

Pin Inputs

Pin	Name	Description		Signal Type

1 input The code words to be viterbi-decoded. real

Pin Outputs

Pin	Name	Description	Signal Type
2	output	the decoded bits.	int

Notes/Equations

1. This model Viterbi-decodes the input code words. CC(2,1,7) and *g1 171 g2 133* is decoded. The delay is equal to the convolutional code memory. Padding bits detect the end of the code words.

One output token is produced when 2 input tokens are consumed.

2. The following algorithm is used, with CC(2,1,7) as an example. The generator functions of the code are g1 (which equals 171 (octal)), and g2 (which equals 133 (octal)).

Because the constraint length is 7, there are 64 possible states in the encoder. In the Viterbi decoder all states are represented by a single column of nodes in the trellis at each symbol instant. At each node in the trellis, there are 2 merging paths; the path with the shortest distance is selected as the survivor.

The long encoded packets in DTV systems make it impractical to store the entire length of the surviving sequences before determining the information sequence when decoding delay and memory is concerned. Instead, only the most recent *L* information bits in each surviving sequence are stored. Once the path with the shortest distance is identified, the symbol associated with path *L* periods ago is conveyed to the output as a decoded information symbol. Generally, parameter *L* is sufficiently large (normally $L \ge 5 K$) for the present symbol of the surviving sequences to have a minimum effect on the decoding of the *L* th previous symbol. In DTV systems, $L = 8 \times \text{TrunLen}$.

The following is the Viterbi algorithm for decoding a CC(n,k,K) code, where K is the

constraint length of convolutional code. In our components, the convolutional code is processed with k = 1.

Branch Metric Calculation

Branch metric $m(a)_{j'}$ at the J th instant of the a path through the trellis is defined as

the logarithm of the joint probability of the received n-bit symbol $r_{j1}, r_{j2}, \dots, r_{jn}$

conditioned on the estimated transmitted n-bit symbol

$$\begin{aligned} c_{j1}^{(\alpha)}, c_{j2}^{(\alpha)}, \dots, c_{jn}^{(\alpha)} \text{ for the a path. That is} \\ m_{j}^{(\alpha)} &= \ln \left(\prod_{i=1}^{n} P(r_{ji} | c_{ji}^{(\alpha)}) \right) \\ &= \sum_{i=1}^{n} \ln P(r_{ji} | c_{ji}^{(\alpha)}) \end{aligned}$$

If the receiver is regarded as part of the channel, for the Viterbi decoder the channel can be considered as an AWGN channel. Therefore

$$m^{(\alpha)}_{\ j} = \sum_{i=1} r_{ji} c_{ji}$$

Path Metric Calculation

The path metric $M^{(a)}$ for the a path at the *J* th instant is the sum of the branch metrics belonging to the a path from the first to the *J* th instant. Therefore

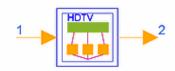
$$M^{(\alpha)} = \sum_{i=1}^{m} m^{(\alpha)}_{j}$$

Information Sequence Update

There are 2^k merging paths at each node in the trellis and the decoder selects the one (known as the survivor) with the largest metric from paths $a_1, a_2, ..., a_2$;

namely

$$max(M^{(\alpha_1)}, M^{(\alpha_2)}, ..., M^{(\alpha_{2^k})})$$


Decoder Output

When the two survivors are determined at the J th instant, the decoder outputs the (J-L)th information symbol from its memory of the survivor with the largest metric.

References

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. S. Lin and D. J. Costello, Jr., *Error Control Coding Fundamentals and Applications*, Prentice Hall, Englewood Cliffs NJ, 1983.

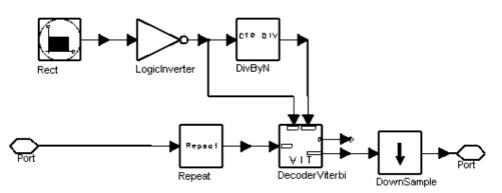
DTV_ConvDecoder1_2

Description: DTV convolutional decoder for 1/2 rate **Library:** DTV, Channel Coding **Class:** SDFDTV_ConvDecoder1_2

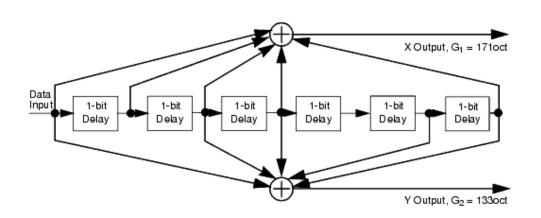
Parameters

Name	Description	Default	Unit	Туре	Range
NumBits	number of soft decision bits	4		int	[1, ∞)
SymbolLen	path memory truncation length	8		int	[1, ∞)

Pin Inputs


Pin	Name	Description	Signal Type		
1	input	signal to be decoded	int		
Pin Outputs					

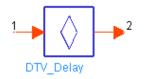
Pin	Name	Description	Signal Type
2	output	decoded signal	int


Notes/Equations

1. This subnetwork model Viterbi decodes a convolutional code that has a mother convolutional code of data rate 1/2 over the input signal. The schematic for this subnetwork is shown below.

DTV_ConvDecoder1_2 Subnetwork

2. A general Viterbi convolutional decoding model decodes the convolutional encoded input data. The encoder is shown below.



Mother Convolutional Code of Rate 1/2 (Constraint Length=7)

References

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_Delay

Description: Delay including random initialization value **Library:** DTV, Channel Coding **Class:** SDFDTV_Delay

Parameters

Name	Description	Default	Unit	Туре	Range
Ν	delay depth	0		int	[0, ∞)
InitialType	initial value type: Zero, NonZero	Zero		enum	

Pin Inputs

Pir	Name	Description	Signal Type		
1	input	input data to be delayed	anytype		
Pin Outputs					

Pin	Name	Description	Signal Type
2	output	output data been delayed	anytype

Notes/Equations

- 1. This model adds a delay to the input data.
- 2. If InitialType is set to Zero, the initial N output tokens will be all zeros; if set to NonZero, the initial N output tokens will be the same as the N input samples.

DTV_Demapper

Description: Soft demapper for uniform and non-uniform QPSK, 16QAM and 64QAM **Library:** DTV, Channel Coding **Class:** SDFDTV_Demapper

Parameters

Name	Description	Default	Unit	Туре	Range
MappingMode	signal constellations and mapping: QPSK, QAM-16, QAM-64	QAM-16		enum	
Alpha	non-uniform factor for DVB-T.	1		int	[1,∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal to be demodulated	complex
2	CSI	channel state information	real

Pin Outputs

Pin	Name	Description	Signal Type
3	output	soft metric information	real

Notes/Equations

- This model de-maps uniform and non-uniform QPSK, 16QAM, and 64QAM to determine the soft-bit information that is used by Viterbi decoding. Each firing, the CSI and input pins consume 1 token each; 2 tokens for QPSK, 4 tokens for 16QAM, or 6 tokens for 64QAM are generated.
- 2. MappingMode specifies the signal constellation and mapping mode: QPSK, QAM-16 or QAM-64.

While the constellation point is sent to the input port before demapping, the point is scaled up by a factor that is determined by Alpha and MappingMode given in the table below.

De-Normalization Factors for Data Symbols

Modulation Scheme	Normalization Factor
QPSK	$c = z \times (\sqrt{2})$
16-QAM: Alpha=1	$c = z \times (\sqrt{10})$
16-QAM: Alpha=2	$c = z \times (\sqrt{20})$
16-QAM: Alpha=4	$c = z \times (\sqrt{52})$
64-QAM: Alpha=1	$c = z \times (\sqrt{42})$
64-QAM: Alpha=2	$c = z \times (\sqrt{60})$
64-QAM: Alpha=4	$c = z \times (\sqrt{108})$

3. The soft bits are determined by the decision equations.

I is the real part of product and Q is the imaginary part.

The final soft bit information b is the product of soft bits calculated by the following equations and the CSI input.

- 64QAM decision equations are:
- b0 = Ib1 = Qb2 = 4 - |b0|b3 = 4 - |b1|b4 = 2 - |b2|b5 = 2 - |b3| 160AM decision equations are: b0 = Ib1 = 0

 - b2 = 2 |b0|
 - b3 = 2 |b1|
- QPSK decision equations are:
 - b0 = I
 - b1 = Q

References

- 1. ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. M. R. G. Butler, S. Armour, P.N. Fletcher, A.R. Nix, D.R. Bull, "Viterbi Decoding Strategies for 5 GHz Wireless LAN Systems" Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th, Volume: 1, 2001.

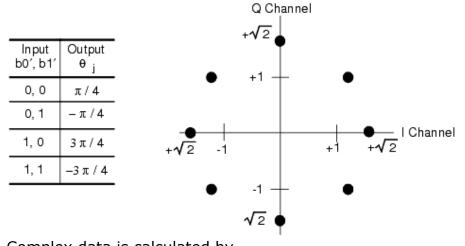
DTV_DQPSKCoder

Description: DQPSK baseband modulator **Library:** DTV, Channel Coding **Class:** SDFDTV_DQPSKCoder

Parameters

Name Description	Default	Unit	Туре	Range
Delay delay of feedback (as length of register)	384		int	[1,∞)

Pin Inputs


1 input input data bits int

Pin Outputs

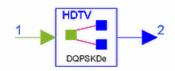
Pin	Name	Description	Signal Type
2	output	signal after constellation mapping	complex

Notes/Equations

- 1. This model performs $\Pi/4$ shift DQPSK constellation mapping and modulation.
- Each firing, two bits of input data are consumed to produce the complex data output. 2. Phase calculation and mapping is shown below.

Phase Calculation and Π/4 Shift DQPSK Constellation Mapping

Complex data is calculated by,


$$\begin{pmatrix} I_j \\ Q_j \end{pmatrix} = \begin{bmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{bmatrix} \begin{pmatrix} I_{j-1} \\ Q_{j-1} \end{pmatrix}$$

where (I_j, Q_j) denotes complex data of the *j* th symbol and *d* denotes the number of symbols between (I_j, Q_j) and (I_{j-1}, Q_{j-1}) .

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_DQPSKDecoder

Description: DQPSK decoder with soft decision **Library:** DTV, Channel Coding **Class:** SDFDTV_DQPSKDecoder

Parameters

Name	Description	Default	Unit	Туре	Range
Delay	delay of feedback (as length of register)	384		int	[1, ∞)
	option to re-normalize reference phase (set to the nearest symbol point): NO , YES	NO		enum	

Pin Inputs

Pin	Name	Description	Signal Type		
1	input	signal to be demodulated	complex		
Pin Outputs					

Pin	Name	Description	Signal Type
2	output	signal after demodulation	real

Notes/Equations

 This model performs π/4 shift DQPSK demodulation; it is the reverse of the process for DTV_DQPSKCoder. It decodes the complex DQPSK signal to floating-point data to be Viterbi convolutional decoded.

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_InnerDecoder

Description: Punctured convolutional decoder **Library:** DTV, Channel Coding **Class:** SDFDTV_InnerDecoder

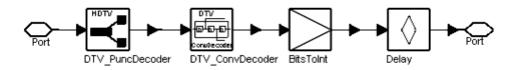
Parameters

Name	Description	Default	Unit	Туре	Range
	punctured convolutional code type: DTV_1_2, DTV_2_3, DTV_3_4, DTV_5_6, DTV_7_8	DTV_1_2		enum	
TrunLen	path memory truncation length (bytes)	10		int	[5, ∞)
DelayByte	number of bytes to delay for delay adjustment	0		int	[-∞, 204 - TrunLen]

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal to be decoded	real

Pin Outputs


Pin	Name	Description	Signal Type
2	output	decoded signal	int

Notes/Equations

1. This subnetwork model performs punctured convolutional decoding over the input signal.

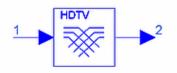
The schematic for this subnetwork is shown below.

DTV_InnerDecoder Schematic

🔚 VAR

2. At the receiver side, DTV_PuncDecoder calculates the puncturing pattern and inserts null (zero) at the position where a bit is punctured. A Viterbi decoder is then used to

Advanced Design System 2011.01 - DTV Design Library


further decode the recovered code bit stream. By replacing the punctured bits with nulls, the punctured bits do not contribute to decoding performance. The data rate of the mother convolutional code is 1/2.

3. The generator polynomial is $G_1 = 171_{oct}$ and $G_2 = 133_{oct}$.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_InterlvFloat

Description: Interleaver and de-interleaver for float **Library:** DTV, Channel Coding **Class:** SDFDTV_InterlvFloat

Parameters

Name	Description	Default	Unit	Туре	Range
Delays	delay of each branch	0123		int array	[0,∞)
Initial_value	initial value in interleaver delay FIFOs	0.0		real	[0,∞)
Multiplier	multiple branch number	1		int	[1,∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal to be interleaved	real

Pin Outputs

Pin	Name	Description	Signal Type
2	output	interleaved signal	real

Notes/Equations

1. This model performs floating-point symbol interleaving or de-interleaving over the input signal. It performs de-interleaving of the floating-point symbol after QAM, QPSK or DQPSK decoding.

A general interleaver is used for floating-point data. It is composed of a number of FIFO delay branches as specified by the Delays array in which the delay can be specified individually. Multiplier can be used to implement multiple isomorphic interleavers.

The structure of this interleaver is the same as that of DTV_InterlvInt, except this model handles floating-point data.

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

Advanced Design System 2011.01 - DTV Design Library

DTV_InterlvInt

Description: Interleaver and de-interleaver for integer **Library:** DTV, Channel Coding **Class:** SDFDTV_InterlvInt

Parameters

Name	Description	Default	Unit	Туре	Range
Delays	delay of each branch	012		int array	[0,∞)
Initial_value	initial value in interleaver delay FIFOs	0		int	[0, ∞)
Multiplier	multiple branch number	1		int	[1,∞)
InitialType	interleaver delay FIFOs initial value type: Const, Random	Const		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal to be interleaved	int
-	-		

Pin Outputs

Pin	Name	Description	Signal T	ype
2	output	interleaved signal	int	

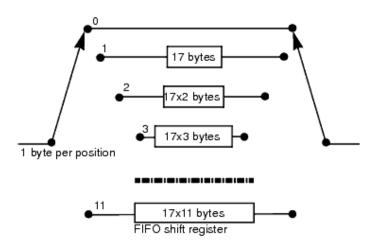
Notes/Equations

 This model performs interleaving or de-interleaving over the input signal. A general interleaver is used for integer data. It is composed of a number of FIFO delay branches as specified by the Delays array in which the delay can be specified individually. Multiplier can be used to implement multiple isomorphic interleavers. The InitialType parameter specifies the initialization values for the interleaver buffers. The table below shows the relationships of InitialType, Initial_value, and initial buffer values.

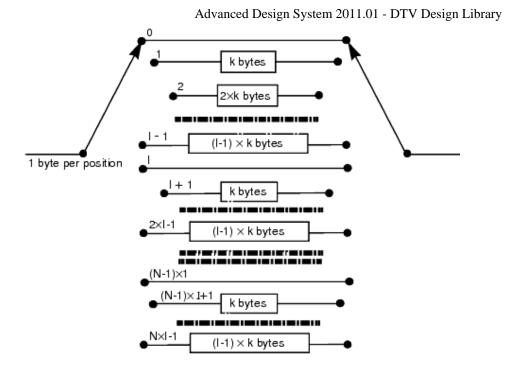
Initial Buffer Values

InitialType	Initial_value	Initial Buffer Value
Const	i (integer)	i
Random	1<=i<=32	i-bit random integer
	i<=0 or i>32	8-bit random integer

2. The conceptual structure of the interleaver used in ISDB-T is described here. Following the conceptual scheme in <u>ISDB-T Interleaver</u>, convolutional byte-wise interleaving with length of I = 12 is applied to the 204-byte packets. For synchronization, the bytes following SYNC bytes will be routed in branch 0 of the interleaver (corresponding to a null delay).


The interleaver can be composed of I = 12 branches, cyclically connected to the input byte-stream by the input switch. Each branch *j* must be a first-in, first-out (FIFO) shift register, with length of $j \times 17$ bytes. The cells of the FIFO must contain 1 byte, and the input and output switches must be synchronized.

The de-interleaver, in principle, is the same as the interleaver, but the branch indices are reversed.


I corresponds to the size of Delay array. The size of every branch, $(j \times 17 \text{ in } \frac{\text{ISDB-T}}{\text{Interleaver}})$, corresponds to the element of Delay array. Multiplier is the number of FIFO register in the interleaver, its value is 1 in <u>ISDB-T Interleaver</u>.

The conceptual interleaver structure with Multiplier = N and Delay array = $(0, 1 \times K, 2 \times K, ..., (I-1) \times K)$ is shown in <u>Interleaver with Multiplier = N and Delay Array =</u> $(0, 1 \times K, 2 \times K, ..., (I-1) \times K)$.

ISDB-T Interleaver

Interleaver with Multiplier = N and Delay Array = $(0, 1 \times K, 2 \times K, ..., (I-1) \times K)$

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_ISDBChCoder

Description: Channel coder of ISDB-T **Library:** DTV, Channel Coding **Class:** SDFDTV_ISDBChCoder

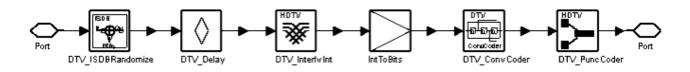
Parameters

Description	Default	Unit	Туре	Range
transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM- 64	DQPSK		enum	
convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
number of segments per layer	13		int	[1, 13]
t	cransmission mode: Mode 1, Mode 2, Mode 3 signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM- 64 convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	transmission mode: Mode 1, Mode 2, Mode 3Mode 1signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-DQPSK54convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8DTV 1/2	transmission mode: Mode 1, Mode 2, Mode 3Mode 1signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM- 54DQPSKconvolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8DTV 1/2	transmission mode: Mode 1, Mode 2, Mode 3Mode 1enumsignal constellations and mapping: DQPSK, QPSK, QAM-16, QAM- 54DQPSKenum54convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8DTV 1/2enum

 	 -

Pin	Name	Description	Signal Type
1	In	input data	int

Pin Outputs


Pin	Name	Description	Signal Type
2	Out	output	int

Notes/Equations

1. This subnetwork model performs channel coding except RS-coding in an ISDB-T signal generator. Functions include bit-wise randomization (energy dispersal), delay adjustment for byte-wise interleaving and deinterleaving, and punctured convolutional encoding.

The schematic for this subnetwork is shown below.

DTV_ISDBChCoder Schematic

🗶 VAR

2. Input of the subnetwork starts with the synchronization byte of the first frame. DTV_ISDBRandomize randomizes RS-coded bytes with a block size of 204 bytes.

DTV_Delay, with DTV_InterlvInt, adjusts the delay between the transmitter and the receiver to provide an identical transmission and reception delay of one frame length for all hierarchical layers. The number of bytes to be delayed in each hierarchical layer is:

 $Delay = (MapRate \times 96^{Mode} \times CodeRate)/8 - 204 \times 11$

where

MapRate equals 2, 2, 4, or 6 for DQPSK, QPSK, 16QAM, or 64QAM, respectively

Mode equals 0, 1, or 2 for Mode 1, Mode 2, or Mode 3, respectively


CodeRate represents the inner code rate 1/2, 2/3, 3/4, 5/6, or 7/8

 204×11 is the delay derived from byte interleaver and deinterleaver

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_ISDBChDecoder

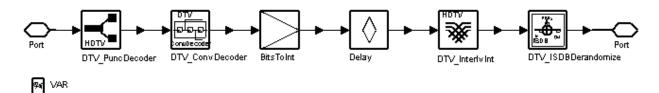
Description: Channel decoder of ISDB-T Library: DTV, Channel Coding Class: SDFDTV_ISDBChDecoder

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK		enum	
CodeRate	convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
Segments	number of segments per layer	13		int	[1, 13]
TrunLen	path memory truncation length (bytes)	10		int	[5, ∞)
DelayByte	number of bytes to delay for delay adjustment	8		int	[0, ∞)
Pin Inputs					

Pin Name Description Signal Type 1 input data real

In


Pin Outputs

Pin	Name	Description	Signal Type
2	Out	output	int

Notes/Equations

1. This subnetwork model performs convolutional decoding, delay adjustment, bytewise deinterleaving, and energy distribution. The schematic for this subnetwork is shown below.

2. The DelayByte parameter includes all delay bytes before and after convolutional decoding.

Advanced Design System 2011.01 - DTV Design Library

3. The Delay component adjusts the block size to 204 bytes after convolutional decoding.

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_ISDBDerandomize

Description: ISDB-T energy derandomization of tansmission stream packages **Library:** DTV, Channel Coding **Class:** SDFDTV_ISDBDerandomize

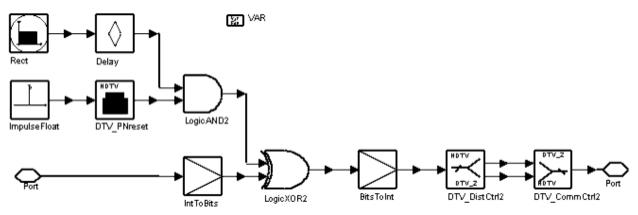
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
CodeRate	convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK		enum	
Segments	number of segments per layer	13		int	[1, 13]
Delay	equivalent delay in bits between randomizer and de-randomizer	0		int	[0, ∞)

Pin Inputs

1 In input int

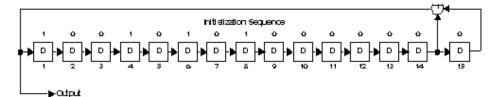
Pin Outputs


Pin	Name	Description	Signal Type
2	Out	output	int

Notes/Equations

1. This subnetwork model derandomizes the signal after byte deinterleaving. The schematic for this subnetwork is shown below.

DTV_ISDBDerandomize Schematic


Advanced Design System 2011.01 - DTV Design Library

2. Derandomization is conducted using a PRBS shown below.

PRBS Generating Polynomial and Circuit

$$G(x) = x^{15} + x^{14} + 1$$

- 3. All signals except the synchronization bytes in each TSP are XORed bit-by-bit using PRBSs, MSB (most significant bit) first. The PRBS-generator is initialized at the beginning of each OFDM frame with 100101010000000 (D1, D2, ..., D15 in <u>PRBS</u> <u>Generating Polynomial and Circuit</u>). In each frame, the first PRBS bit is applied to the MSB of the byte next to the TSP synchronization byte (the second byte of the frame). Note that the shift register also performs shifting when the TSP synchronization byte arrives.
- 4. The Delay parameter includes all delay bits before derandomization.

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_ISDBRandomize

Description: ISDB-T energy randomization of tansmission stream packages **Library:** DTV, Channel Coding **Class:** SDFDTV_ISDBRandomize

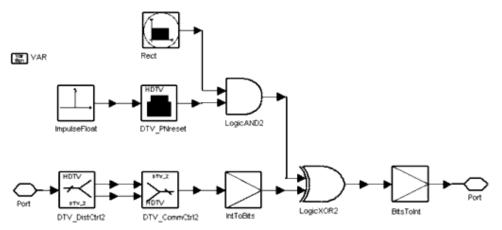
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
CodeRate	convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK		enum	
Segments	number of segments per layer	13		int	[1, 13]

Pin Inputs

Pin	Name	ne Description Signal Ty				
1	In	input	int			
Din Outnute						

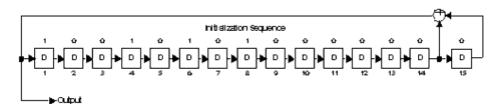
Pin Outputs


Pin	Name	Description	Signal Type
2	Out	output	int

Notes/Equations

 This subnetwork model randomizes the RS-coded TSP with a block size of 204 bytes in an ISDB-T signal generator. (This subnetwork can also be referred to as an energy-disperser.)

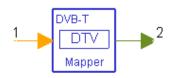
The schematic for the subnetwork is shown below.


DTV_ISDBRandomize Schematic

2. Randomization is conducted at each hierarchical layer using a PRBS as shown below.

PRBS Generating Polynomial and Circuit

$$G(x) = x^{15} + x^{14} + 1$$



- 3. All signals except the synchronization bytes in each TSP are XORed bit-by-bit using PRBSs, most significant bit first.
- 4. The PRBS generator is initialized at the beginning of each OFDM frame with the sequence of 100101010000000 (D1, D2, ..., D15 in <u>PRBS Generating Polynomial and Circuit</u>). In each frame, the PRBS first bit is applied to the most significant bit of the byte next to the TSP synchronization byte (the second byte of the frame). The shift register will also perform shifting when the TSP synchronization byte arrives.
- 5. Input of the subnetwork starts with the synchronization byte of the first frame.

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_Mapper

Description: Uniform and non-uniform mapping for DVB-T and ISDB-T **Library:** DTV, Channel Coding **Class:** SDFDTV Mapper

Parameters

Name	Description	Default	Unit	Туре	Range
MappingMode	signal constellations and mapping: QPSK, QAM-16, QAM-64	QAM-16		enum	
Alpha	non-uniform factor for DVB-T.	1		int	[1,∞)

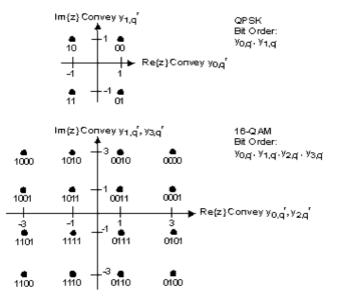
Pin Inputs

Pin	Name	Description	Signal Type
1	input	input data bits	int

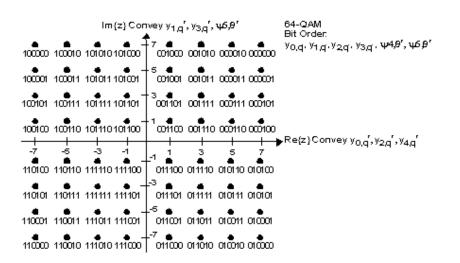
Pin Outputs

Pin	Name	Description	Signal Type
2	output	signal after constellation mapping	complex

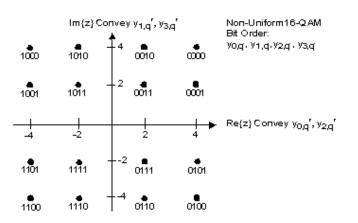
Notes/Equations

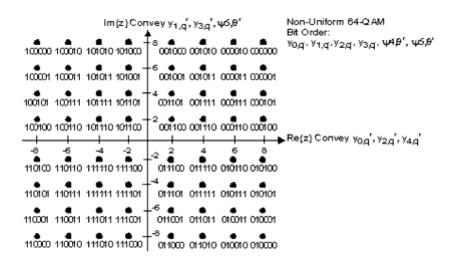

1. This model performs QPSK, 16QAM, 64QAM mapping or non-uniform 16QAM and 64QAM Gray mapping. Each firing, 2 tokens for QPSK, 4 tokens for 16QAM, or 6 tokens for 64QAM are

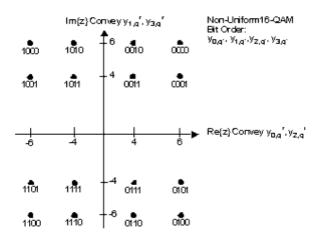
Each firing, 2 tokens for QPSK, 4 tokens for 16QAM, or 6 tokens for 64QAM are consumed and one constellation symbol is generated.


- 2. The MappingMode parameter specifies the constellation and mapping mode: QPSK, QAM-16 or QAM-64.
- 3. The Alpha parameter determines the exact proportions of the constellation. Alpha is the minimum distance separating the two constellation points carrying different highpriority bit values divided by the minimum distance separating any two constellation points. While the non-hierarchical transmission uses the same uniform constellation as Alpha=1, non-uniform constellation for hierarchical transmission is also supported using Alpha=2 or 4.
- Bit patterns based on Alpha and MappingMode settings are shown in <u>QPSK</u>, <u>16-QAM</u> <u>Mapping Bit Patterns (Non-Hierarchical and Hierarchical, Alpha=1)</u> through <u>Non-</u> <u>Uniform 64-QAM Mapping Bit Patterns (Alpha=4)</u>.

QPSK, 16-QAM Mapping Bit Patterns (Non-Hierarchical and Hierarchical, Alpha=1)


Advanced Design System 2011.01 - DTV Design Library


64-QAM Mapping Bit Patterns (Non-Hierarchical and Hierarchical, Alpha=1)


Non-Uniform 16-QAM Mapping Bit Patterns (Alpha=2)

Advanced Design System 2011.01 - DTV Design Library Non-Uniform 64-QAM Mapping Bit Patterns (Alpha=2)

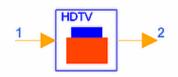
Non-Uniform 16-QAM Mapping Bit Patterns (Alpha=4)

Non-Uniform 64-QAM Mapping Bit Patterns (Alpha=4)

Advanced Design System 2011.01 - DTV Design Library

	lm{z}Convey y _{1,q}	ϳʹ, _{Ϋ3,} ϥʹ, ψ 5,θ΄	Non-Uniform 64-QAM Bit Order:
100000 100010 101010 101	• [‡] •		^У 0,q· ^у 1,q· ^у 2,q· ^у 3,q· ^{ψ4,θ} ′, ₄ 6,θ′
100001 100011 101011 101	on +s	001001 001011 000011 000001	
100101 100111 101111 101	∎ +6 101	001101 001111 000111 000101	
100100 100110 101110 101	100 +4	001100 001110 000110 001100	
-10 -8 -6 -	4	4 6 8 10	- Re{z}Convey y₀,q', y₂,q', y₄,q'
110100 110110 111110 111	100 +4	011100 011110 010110 010100	
110101 110111 111111 111	101 +6	011101 011111 010111 010101	
110001 110011 111011 111	on ¹⁻⁸	011001 011011 010011 010001	
110000 110010 111010 111	000 +-10	011000 011010 010010 010000	

5. The mapped symbols are normalized; normalization factors are shown in the table below.


Normalization Factors

Modulation Scheme	Normalization Factor
QPSK	$c = z/(\sqrt{2})$
16-QAM	$c = z/(\sqrt{10})$
16-QAM	$c = z/(\sqrt{20})$
16-QAM	$c = z/(\sqrt{52})$
64-QAM	$c = z/(\sqrt{42})$
64-QAM	$c = z/(\sqrt{60})$
64-QAM	$c = z/(\sqrt{108})$

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_PNreset

Description: PN code source with reset input **Library:** DTV, Channel Coding **Class:** SDFDTV_PNreset

Parameters

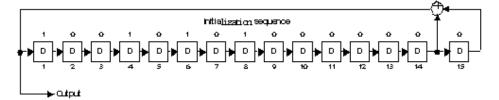
Name	Description	Default	Unit	Туре	Range
Polynomial	generator polynomial (X^0+X^1++X^M)	1 0 0 0 0 0 0 0 0 0 0 0 0 1 1		int array	[0, 1]
Initial	initial and reset value in registers	1 0 0 1 0 1 0 1 0 0 0 0 0 0 0		int array	[0, 1]
SignalPoint	output register after each shift	0		int	[0, 31]

Pin Inputs

1 reset reset pulse int

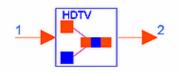
Pin Outputs

Pin	Name	Description	Signal Type
2	output	pseudo random binary sequence	int


Notes/Equations

- 1. This model generates a pseudo-random binary sequence with less than 32 internal shift registers and an external reset pin.
- 2. This model generates pseudo-random binary sequence for energy dispersal of the TSPs. In the ISDB-T specification, the polynomial for this pseudo-random binary sequence generator is:

 $g(x) = x^{15} + x^{14} + 1$


At the start of every OFDM frame, the reset signal becomes valid while the internal shift register is initialized to the sequence of 100101010000000. PRBS generation is shown below.

PRBS Generation

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_PuncCoder

Description: Puncture coder **Library:** DTV, Channel Coding **Class:** SDFDTV_PuncCoder

Parameters

Name	Description	Default	Unit Type	Range
	punctured convolutional code type: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2	enum	

Pin Inputs

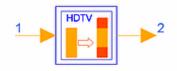
Pin	Name	Description	Signal Type				
1	input	input signal to be perforated	anytype				
Pin Outputs							

Pin	Name	Description	Signal Type
2	output	output signal after perforated	anytype

Notes/Equations

1. This model perforates the input convolutional code to produce a punctured convolutional code. Each firing, *K* tokens are consumed and *N* tokens are produced; *K* and *N* are determined based on code type; refer to the table below.

K and N Values


PuncConvType	K (No. of Input Bytes)	N (No. of Output Bits)
DTV 1/2	2	2
DTV 2/3	4	3
DTV 3/4	6	4
DTV 5/6	10	6
DTV 7/8	14	8

 Punctured convolutional code is usually generated by perforate a mother convolutional code according to a certain pattern to achieve a different data rate. This model determines the perforation pattern according to the code type chosen, then reads the input convolutional coded bits and outputs the input bit or discards it according to the pattern in the table below.

PuncConvType	Puncture Pattern	Transmit Sequence
DTV 1/2	2	2
DTV 2/3	4	3
DTV 3/4	6	4
DTV 5/6	10	6
DTV 7/8	14	8

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);
- Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
 ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

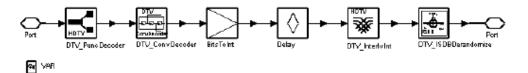
DTV_PuncConvCoder

Description: Punctured convolutional encoder **Library:** DTV, Channel Coding **Class:** SDFDTV_PuncConvCoder

Parameters

Name Description	Default	Unit Type	Range
PuncConvType punctured convolutional code type: DTV_1_2, DTV_2_3, DTV_3_4, DTV_5_6, DTV_7	DTV_1_2	enum	

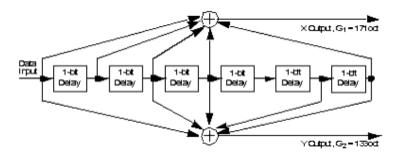
Pin Inputs


Pin	Name	Description	Signal Type
1	input	signal to be encoded	int
Pin	Output	s	

Pin	Name	Description	Signal Type
2	output	encoded signal	int

Notes/Equations

1. This subnetwork model performs punctured convolutional encoding. The schematic for this subnetwork is shown below.


DTV_PuncConvCoder Schematic

2. This subnetwork converts byte input data into bit streams and uses a general convolutional coding model to encode them into the mother convolutional code of data rate 1/2.

A puncture encoder generates the punctured convolutional code. PuncConvType specifies the type of DTV punctured convolutional code. The encoder is shown below.


Mother Convolutional Code of Rate 1/2 (Constraint Length=7)

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_PuncConvDecoder

Description: Punctured convolutional decoder **Library:** DTV, Channel Coding **Class:** SDFDTV_PuncConvDecoder

Parameters

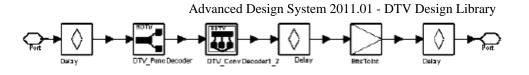
Name	Description	Default	Unit	Туре	Range
PuncConvType	punctured convolutional code type: DTV_1_2, DTV_2_3, DTV_3_4, DTV_5_6, DTV_7_8	DTV_1_2		enum	
NumBits	number of soft decision bits	4		int	[1,∞)
SymbolLen	path memory truncation length	8		int	[1,∞)
DelayBit	number of bits to delay for delay adjustment	0		int	[0, ∞)†
DelayByte	number of bytes to delay for delay adjustment	0		int	[-∞, 204 - SymbolLen]
DelayCC	number of bits to delay before Viterbi decoder	0		int	[0, ∞) ⁺⁺

+ In ISDB and DVB, DelayBit=0

++ In ISDB and DVB, DelayCC=0

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal to be decoded	int


Pin Outputs

Pin	Name	Description	Signal Type
2	output	decoded signal	int

Notes/Equations

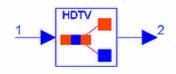
1. This subnetwork model performs punctured convolutional decoding of data rate 1/2 over the input signal. The schematic for this subnetwork is shown below.

DTV_PuncConvDecoder Schematic



Lar UAR

 A puncture decoder model is used to decode the punctured convolutional encoded input to normal convolutional coded data. A general Viterbi convolutional decoding model is used to further decode it. After decoding, bit delay adjustment is performed, bits are packed to bytes and, if necessary, a byte delay adjustment is applied before output.


The data rate of the mother convolutional code is 1/2. The encoder is shown below.

Mother Convolutional Code of Rate 1/2 (Constraint Length=7)

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_PuncDecoder

Description: Puncture decoder **Library:** DTV, Channel Coding **Class:** SDFDTV_PuncDecoder

Parameters

Name	Description	Default	Unit	Туре	Range
	Punctured convolutional code type: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	

Pin Inputs

1 input input signal to be refilled real	
I input signal to be refined real	
Pin Outputs	

2 output output signal after refilled real

Notes/Equations

1. This model completes the inverse procedure of the puncture coder that was perforated during puncture encoding. Each firing, *K* tokens are consumed at the input and *N* tokens are produced according to the table below.

K and N Values

PuncConvType	K	Ν
DTV 1/2	2	2
DTV 2/3	4	3
DTV 3/4	6	4
DTV 5/6	10	6
DTV 7/8	14	8

2. This model interpolates a zero value to the punctured data stream to form a fulllength data stream. The perforation pattern, based on PuncConvType, then interpolates zero into the input bits to form the output according to the pattern in the table below.

Advanced Design System 2011.01 - DTV Design Library Puncture Pattern and Transmit Sequence

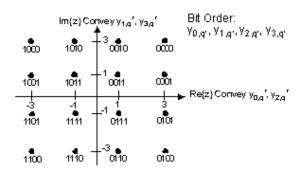
PuncConvType	Puncture Pattern	Transmit Sequence
DTV 1/2	2	2
DTV 2/3	4	3
DTV 3/4	6	4
DTV 5/6	10	6
DTV 7/8	14	8

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

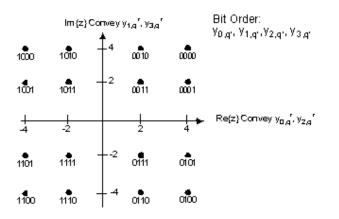
DTV_QAM16Coder

Description: Uniform and non-uniform 16-QAM encoder for DVB-T and ISDB-T **Library:** DTV, Channel Coding **Class:** SDFDTV_QAM16Coder

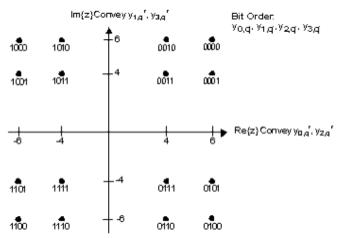
Parameters


non- puts	uniform factor	for DVB-T.	1		int	[1,∞)
puts						L=/ /
ame	Description	Signal Ty	ре			
out	input data bits	int				
	out	Description out input data bits	out input data bits int			

Pin	Name	Description	Signal Type
2	output	signal after constellation mapping	complex


Notes/Equations

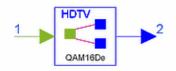
- 1. This model performs 16-QAM mapping and non-uniform 16-QAM Gray mapping.
- 2. This model groups the input data bits to 4-bit groups and maps them into a complex signal from the 16-QAM constellation (shown in <u>Uniform and Non-Uniform 16-QAM</u> with Alpha = 1 Mapping and Corresponding Bit Pattern), or maps them into a complex signal from the non-uniform 16-QAM constellation, (shown in <u>Non-Uniform 16-QAM</u> with Alpha = 2 Mapping and Corresponding Bit Pattern and <u>Non-Uniform 16-QAM</u> with Alpha = 4 Mapping and Corresponding Bit Pattern).


Uniform and Non-Uniform 16-QAM with Alpha = 1 Mapping and Corresponding Bit Pattern

Non-Uniform 16-QAM with Alpha = 2 Mapping and Corresponding Bit Pattern

Non-Uniform 16-QAM with Alpha = 4 Mapping and Corresponding Bit Pattern

After mapping, the output signal is normalized by a normalization factor c, the value of c is:


$$c = \frac{z}{\sqrt{10}}, \alpha = 1$$
$$c = \frac{z}{\sqrt{20}}, \alpha = 2$$
$$c = \frac{z}{\sqrt{52}}, \alpha = 4$$

where z is the complex signal from 16-QAM and non-uniform 16-QAM constellation.

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television. EN300 744 v1.2.1, European

Advanced Design System 2011.01 - DTV Design Library Telecommunication Standard, July 1999.

DTV_QAM16Decoder

Description: Uniform and non-uniform 16-QAM decoder for DVB-T and ISDB-T **Library:** DTV, Channel Coding **Class:** SDFDTV_QAM16Decoder

Parameters

Nan	ne Des	cription	Default	Unit	Туре	Range
Alph	a non-	uniform factor for DVB-T.	1		int	[1,∞)
Pin :	Inputs					
	-	Description	Signal T	уре		

Pin Outputs

Pin	Name	Description	Signal Type
2	output	signal after demodulation	real

Notes/Equations

- 1. This model performs 16-QAM de-mapping and non-uniform 16-QAM Gray demapping; it is the reverse of the process for DTV_QAM16Coder.
- 2. This model de-maps the input complex QAM signal data to floating-point data for Viterbi convolutional decoding according to 16-QAM or non-uniform 16-QAM mapping constellation.

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_QAM64Coderc

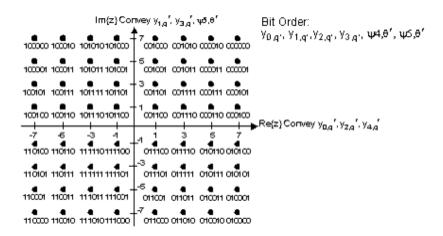
Description: Uniform and non-uniform 64-QAM encoder for DVB-T and ISDB-T **Library:** DTV, Channel Coding **Class:** SDFDTV_QAM64Coder

Parameters

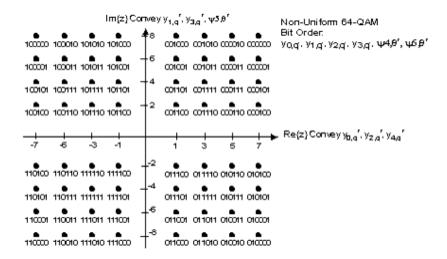
Nam	e Des	Description			Unit	Туре	Range
Alpha	a non-	-uniform factor	1		int	[1,∞)	
Pin I	nputs						
Pin l	Name	Description	Signal Ty	ре			

Pin	Name	Description	Signal Type
2	output	signal after constellation mapping	complex

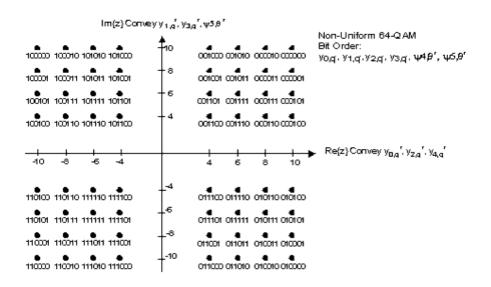
Notes/Equations


- 1. This model performs 64-QAM mapping and non-uniform 64-QAM Gray mapping.
- 2. This model groups the input data bits to 6-bit groups and maps them into a complex signal from the 64-QAM constellation (shown in <u>Uniform 64-QAM and Non-Uniform 64-QAM with Alpha = 1 Mapping and Corresponding Bit Pattern</u>), or maps them into a complex signal from non-uniform 64-QAM constellation (shown in <u>Non-Uniform 64-QAM with Alpha = 2 Mapping and Corresponding Bit Pattern</u> and <u>Non-Uniform 64-QAM with Alpha = 4 Mapping and Corresponding Bit Pattern</u>).

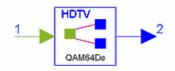
After mapping, the output signal is normalized by normalization factor *c*, the value of *c* is:


 $c = \frac{z}{\sqrt{42}}, \alpha = 1$ $c = \frac{z}{\sqrt{60}}, \alpha = 2$ $c = \frac{z}{\sqrt{108}}, \alpha = 4$

where *z* is the complex signal from 64-QAM and non-uniform 64-QAM constellation.


Advanced Design System 2011.01 - DTV Design Library Uniform 64-QAM and Non-Uniform 64-QAM with Alpha = 1 Mapping and Corresponding Bit Pattern

Non-Uniform 64-QAM with Alpha = 2 Mapping and Corresponding Bit Pattern



Non-uniform 64-QAM with Alpha = 4 Mapping and Corresponding Bit Pattern

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

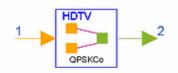
DTV_QAM64Decoder

Description: Uniform and non-uniform 64-QAM decoder for DVB-T and ISDB-T **Library:** DTV, Channel Coding **Class:** SDFDTV_QAM64Decoder

Parameters

Nan	ne Des	cription	Default	Unit	Туре	Range
Alph	a non-	uniform factor for DVB-T.	1		int	[1,∞)
Pin Inputs						
Pin :	Inputs					
	-	Description	Signal T	уре		

Pin Outputs


Pin	Name	Description	Signal Type
2	output	signal after demodulation	real

Notes/Equations

- 1. This model performs 64-QAM de-mapping and non-uniform 64-QAM Gray demapping; it is the reverse of the process for DTV_QAM64Coder.
- 2. This model de-maps the input complex QAM signal data to floating-point data for Viterbi convolutional decoding according to 64-QAM or non-uniform 64-QAM mapping constellation.

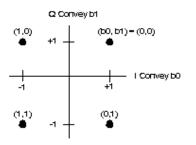
- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_QPSKCoder

Description: QPSK coder **Library:** DTV, Channel Coding **Class:** SDFDTV_QPSKCoder

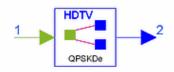
Pin Inputs

Pin	Name	Description	Signal Type
1	input	input data bits	int
Din	Output	re .	


Pin	Outputs
-----	---------

Pin	Name	Description	Signal Type
2	output	signal after constellation mapping	complex

Notes/Equations


- 1. This model performs QPSK constellation mapping and modulation.
- 2. This model groups the input data bits to 2-bit groups and maps them into complex data according to the QPSK constellation shown below.

QPSK Mapping and Corresponding Bit Patterns

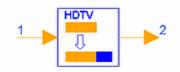
- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_QPSKDecoder

Description: QPSK decoder **Library:** DTV, Channel Coding **Class:** SDFDTV_QPSKDecoder

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal to be demodulated	complex
Pin	Output	ts	


Pin	Name	Description	Signal Type
2	output	signal after demodulation	real

Notes/Equations

- 1. This model performs QPSK demodulation; it is the reverse of the process for DTV_QPSKCoder.
- 2. This model maps the input complex QPSK signal data to floating-point data for Viterbi convolutional decoding according to the QPSK mapping constellation.

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_RSCoder

Description: Reed-Solomon encoder **Library:** DTV, Channel Coding **Class:** SDFDTV_RSCoder

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
М	Galois field (2 ^M) size definition	8	М		int	[2, 16]
К	input code word length	188	К		int	(N-K, N)
N	output word size (K+parity)	204	N		int	[1, 2 ^M - 1]
DataSequence	data array sequence: Forward, Reverse	Forward			enum	
SpacePlace	place of zero byte (00h) in data array: Head, Tail	Head			enum	
ParitySequence	parity array sequence: forward, reverse	forward			enum	
Encode47H	place 47H in data array: yes, no	yes			enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal to be encoded	int
D:	A	-	

Pin Outputs

Pin	Name	Description	Signal Type
2	output	error protected signal	int

Notes/Equations

1. This model performs shortened Reed-Solomon error correcting encoding over the input signal for DVB-T and ISDB-T systems.

Each firing, *K* tokens are consumed at the input pin and *N* tokens are produced. For the shortened code, $(2^M - 1 - N)$ zero symbols are added in the information symbols and *N* - *K* parity symbols are generated. *N* - *K* parity symbols are appended to the input signal to form the output.

If DataSequence = Forward, the order of symbols to be encoded is the same as their input order; otherwise, the order is the reverse of their input order.

If SpacePlace = Head, zero symbols are added before the information symbols; otherwise, they are added behind the information symbols.

If ParitySequence = forward, the output order of parity symbols is the same as the original order when they are generated; otherwise, the order is reverse of the original order.

If Encode47H = yes, the first byte 47H, the sync byte of every Transport Stream

Packet (TSP) is treated as the information symbol and encoded; otherwise, it is not encoded and the number of zero symbols added is changed to $(2^M - N)$. Values in DVB-T and ISDB-T are: DataSequence=Forward, SpacePlace=Head, ParitySequence=forward, Encode47H=yes.

- 2. The value range of the input data is $[0, 2^{M} 1]$.
- 3. Galois field generator polynomial is automatically selected according to the value of *M*.
- 4. Implementation

The code format is: RS code (n, k), defined on Galois Field (2^m) .

Galois Field Generator

Galois fields are set up depending on the number of bits per symbol and the number of symbols per block.

Algorithm

Generate GF (2^m) from the non-reducible primitive polynomial. It is defined as the polynomial of least degree, with coefficients in GF(2) and a highest degree coefficient equal to 1. The polynomial is always degree m.

The elements of Galois field can have two representations: exponent or polynomial.

Let a represent the root of the primitive polynomial p(x). Then in GF(2^m), for any $0 \le i \le 2^m - 2$

$$\alpha^{i} = b_{i}(0) + b_{i}(1)\alpha + b_{i}(2)\alpha^{2} + \dots + b_{i}(m-1)\alpha^{m-1}$$

where the binary vector $(b_i, (0), b_i, (1), \dots, b_i, (m-1))$ is the representation of the

integer *polynomial[i]*. Now *exponent[i]* is the element whose polynomial representation is $(b_i (0), b_i (1), ..., b_i (m-1))$, and *exponent[polynomial[i]]=i*.

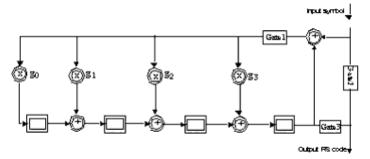
The polynomial representation is convenient for addition while the exponent representation for multiplication.

RS Encoder

The RS generator polynomial is more generally defined as $m_2 + \frac{m_2 + 1}{2}$

$$g(x) = (x - a^{m_0})(x - a^{m_0 + 1}) \dots (x - a^{m_0 + 2t - 1})$$

where t is the correctable error number. It can be reduced to a 2t order of polynomial $g(x) = x^{2t} + g_{2t-1}x^{2t-1} + \dots + g_0$

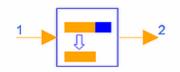

The encoding is done by using a feedback shift register with appropriate connections specified by the element g_i . The encoded symbol is then

$in(x) \times x^{(n-k)} + parity(x)$

where in(x) is the polynomial representation of the input data, parity(x) is the polynomial of the parity symbol.

The RS encoder diagram is shown below.

Reed Solomon Encoder


5. Field generator polynomial of DVB-T is

 $p(x) = x^8 + x^4 + x^3 + x^2 + 1$

The shortened Reed-Solomon code is implemented by adding 51 bytes, all set to zero, before the information bytes at the input of an RS (255,239, t = 8) encoder. After RS coding, these null bytes are discarded, leading to an RS code word of N=204 bytes.

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_RSDecoder

Description: Reed-Solomon decoder **Library:** DTV, Channel Coding **Class:** SDFDTV_RSDecoder

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
М	Galois field (2 ^M) size definition	8	m		int	[2, 16]
К	size of output block (data)	188	k		int	(N-K, N)
N	size of input block (data + parity)	204	n		int	[1, 2 ^M - 1]
Error	stop simulation option	0			int	[0, ∞)†
DataSequence	data array sequence: Forward, Reverse	Forward			enum	
SpacePlace	place of zero byte (00h) in data array: Head, Tail	Head			enum	
ParitySequence	parity array sequence: forward, reverse	forward			enum	
Encode47H	place 47H in data array: yes, no	yes			enum	

⁺ When Error>0, simulation will stop if the number of received uncorrectable RS packets is larger than the number specified.

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal to be decoded	int
Pin	Output	s	

Pin Name	Description	Signal Type

2 output decoded signal int

Notes/Equations

 This model performs Reed-Solomon error correcting decoding over the input signal. Each firing, *N* tokens are consumed at the input port and *K* tokens are produced. If DataSequence = Forward, the order of symbols to be decoded is the same as their input order; otherwise, the order is the reverse of their input order.

If SpacePlace = Head, $(2^{M} - 1 - N)$ zero symbols are added before the information symbols before decoding; otherwise, they are added behind the information symbols. If ParitySequence = forward, the input order of parity symbols is the same as the order needed in decoding; otherwise, the order is reverse of the decoding order.

If Encode47H = yes, the first byte 47H, the sync byte of every Transport Stream Packet (TSP) is treated as the information symbol and decoded; otherwise, it is not decoded and the number of zero symbols added is changed to $(2^{M} - N)$. Values in DVB-T and ISDB-T are: DataSequence=Forward, SpacePlace=Head, ParitySequence=forward, Encode47H=yes.

- 2. Galois field generator polynomial is automatically selected according to the value of *M*.
- 3. Implementation

Decoding Routines

For the shortened code, the same number of zero symbols is inserted into the same position as in the RS encoder, and a Reed-Solomon decoder is used to decode the block. After decoding, the padded symbols are discarded leaving the desired information symbols.

Getting Syndromes

Syndromes indicate an erroneous situation. When the generator polynomial g(x) and the received code word r(x) are given, the occurrence of one or more errors during transmission of an encoded block is known.

 $v(x) = v_0 + v_1 x + v_2 x^2 + \dots + v_{n-1} x^{n-1}$

where v(x) is the polynomial representation of the transmitted symbol.

 $r(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_{n-1} x^{n-1}$

where r(x) is the polynomial representation of the received symbol.

Then r(x) = r(x) + c(x)

r(x) = v(x) + e(x)

where e(x) denotes the error patterns. If $r_i = v_i$, then $e_i = 0$; else $e_i = 1$.

Remember,

v(x) = g(x)Q(x)

where Q(x) is the quotient.

So, if a^i is the root of g(x), then

$$v(\alpha^{i}) = 0$$
 and $r(\alpha^{i}) = e(\alpha^{i})$

To check the occurrence of errors at the receiver, calculate syndromes s(i); the syndromes are determined by the error patterns

$$s(i) = e(\alpha^{m_0 + i})$$

If one or more of the syndromes are not equal to 0, one or more symbol errors occur in the received data. For example, if

In the received data, for chample, $\alpha^{m_0}, \alpha^{m_0+1}, ..., \alpha^{m_0+2t-1}$ are roots of g(x), then $s(1) = r(\alpha^{m_0})$ $s(2) = r(\alpha^{m_0+1})$

 $s(2t) = r(\alpha^{m_0+2t-1})$

Use the syndromes to find the error location polynomial.

Given the syndromes s(i), the decoding algorithm will synthesize an error location polynomial. The roots of the polynomial indicate the error positions. Assuming the received symbols have v symbol errors, the syndromes are represented as follows.

$$\begin{split} s(1) &= \beta_1^{m_0} + \beta_2^{m_0} + \ldots + \beta_v^{m_0} \\ s(2) &= \beta_1^{m_0+1} + \beta_2^{m_0+1} + \ldots \beta_v^{m_0+1} \\ \vdots \\ \vdots \\ s(2t) &= \beta_1^{m_0+2t-1} + \beta_2^{m_0+2t-1} + \ldots \beta_v^{m_0+2t-1} \\ \text{where} \\ \beta_l &= a^{i_l} \\ \text{and} \\ a^{i_l} (1 \leq l \leq v) \\ \text{is the error location and } m_0 \text{ can be any integer. (Generally, } m_0 \text{ is 0 or 1.)} \end{split}$$

Now the error location polynomial is defined as

$$\begin{aligned} \Omega(x) &= (1 + \beta_1^{m_0} x)(1 + \beta_2^{m_0} x) \dots (1 + \beta_v^{m_0} x) \\ &= \Omega_0 + \Omega_1 x + \Omega_2 x^2 + \dots + \Omega_v x^v \end{aligned}$$

The Berlekamp iterative algorithm is used to construct this polynomial, which is the key to RS decoding. (The algorithm is described here without proof. For more information, refer to <u>Reference [3]</u>). An iterative table will be filled as shown in the table below.

Berlekamp Iterative Table

μ	$\Omega^{(\mu)}(x)$	d_{μ}	l_{μ}	$\mu - l_{\mu}$
-1	1	1	0	-1
0	1	s_1	0	0
1				
2				
2t				

Where μ is the iterative step number, d^{μ} is the μ th step iterative difference, l^{μ} is the order of $\Omega^{(\mu)}(x)$.

If
$$d^{\mu} = 0$$
 then
 $\Omega_{\mu}^{(\mu+1)}(x) = \Omega_{\mu}^{(\mu)}(x)$
and
 $l_{\mu+1} = l_{\mu}$

If $d^{\mu} \neq 0$, search for lines in the table to find step ρ in which $d\rho \neq 0$ and the value of $\rho - l\rho$ is the maximum, then

$$\Omega^{(\mu+1)}(x) = \Omega^{(\mu)}(x) - d_{\mu}d_{\rho}^{-1}x^{(\mu-\rho)}\Omega^{(\rho)}(x)$$

and
$$l_{\mu+1} = max(l_{\mu}, l_{\rho} + \mu - \rho)$$

For the two conditions

$$d_{\mu+1} = s_{\mu+2} + \Omega_1^{(\mu+1)} s_{\mu+1} + \dots + \Omega_{l_{\mu+1}}^{(\mu+1)} s_{\mu+2-l_{\mu+1}}$$

Iterate until the last line of the table $\Omega^{(2t)}(x)$ is determined. If the order of the polynomial is greater than t, which means the received codeword block has more than *t* errors, the error cannot be corrected.

Determining Error Values

In the case of non-binary codes, error values must be known. Error values will be solved and corrected, unless the order of the error location polynomial is greater than t, in which case uncorrected information symbols will not be used.

The minimum order polynomial is found by iterating and solved to obtain the least number of roots (error location number). The inverse element of the root indicates the error location.

The error value is determined by the equation from <u>Reference [3]</u>:

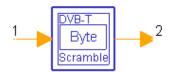
$$e_{jl} = \beta_l^{(1-m_0)} \frac{z(\beta_l^{-1})}{\prod_{v \in I} (1+\beta_i \beta_l^{-1})}$$
where

wnere

$$\begin{aligned} z(x) &= 1 + (s_1 + \Omega_1)x + (s_2 + \Omega_1 s_1 + \Omega_2)x^2 + \\ & \dots + (s_v + \Omega_1 s_{v-1} + \Omega_2 s_{v-2} + \dots + \Omega_v)x^v \end{aligned}$$

then

$$out(x) = r(x) - e(x)$$


4. The field generator polynomial of DVB-T and ISDB-T is

 $p(x) = x^8 + x^4 + x^3 + x^2 + 1$

The shortened RS code is implemented by adding 51 bytes, all set to zero, before information bytes at the input of an RS (255,239, t=8) encode. After RS decoding null bytes are discarded, leading to an RS decode word of K=188 bytes.

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2, ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 3. E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.

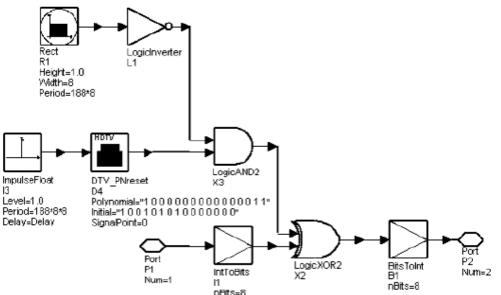
DTV_ScrambleByte

Description: Byte scrambler **Library:** DTV, Channel Coding **Class:** SDFDTV_ScrambleByte

Parameters

Name Description			Default	Unit	Туре	Range	
Delay number of bits to delay for delay adjustment				8		int	[0,∞)
Pin Inputs							
Pin	Inputs						
	•]				
	•		Signal Type				

		-	_	_
Pin	0	utpu	ts	


Pin	Name	Description	Signal Type
2	output	encoded signal	int

Notes/Equations

1. This subnetwork model randomizes the MPEG-2 transport MUX packet, which is 188 bytes.

The schematic for this subnetwork is shown below.

DTV_ScrambleByte Schematic

2. The polynomial for the pseudo-random binary sequence generator is:

 $g(x) = x^{15} + x^{14} + 1$

The first one-sync word byte is unrandomized. Loading of the sequence 1001010000000 into the PRBS registers is initiated at the start of each of the 8 transport packets.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV Design Examples

- DVB-H System Design Examples (dtv)
- DVB-T Receiver Design Examples (dtv)
- DVB-T System Design Examples (dtv)
- ISDB-T System Design Examples (dtv)

DVB-H System Design Examples

DVB-H design examples can be accessed from the ADS Main window *File > Open > Example > DTV*. Schematics and simulation results for designs in *DTV_DVBH_wrk* are described in this section.

Hierarchical system design:

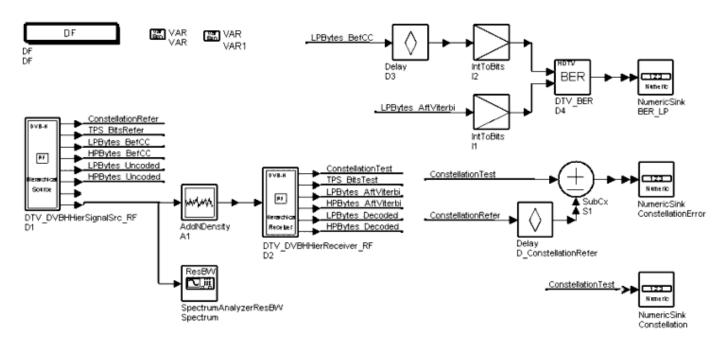
• DTV_DVBH_Demo_Hierarchical

Non-hierarchical system design:

• DTV_DVBH_Demo_Non-Hierarchical

DTV DVB-H Hierarchical Transmission

DTV_DVBH_Demo_Hierarchical


Features

- Mode: 4k
- MappingMode: 64QAM
- Inner interleaving: in-depth
- High priority inner code rate: 2/3
- Low priority inner code rate: 5/6
- Guard interval: 1/16
- Oversampling ratio: 1

Description

This design is a hierarchical transmission example of DVB-H spectrum, constellation, and MER and BER measurements under an AWGN channel. The schematic for this design is shown below.

DTV_DVBH_Demo_Hierarchical Schematic

Parameters that can be changed by users are contained in VAR.

VAR1 contains delays needed for MER and BER measurements.

For BER measurements after Reed-Solomon decoding, users should:

- Replace the Delay D3 component input signal LPBytes_BefCC with LPBytes_Uncoded.
- Replace IntToBits I1 input signal LPBytes_AftViterbi with LPBytes_Decoded.
- Replace DTV_BER and NumericSink BER_LP delay parameter settings Delay_AftVB_LP × 2 with Delay_AftDescramble_LP.
- Replace NumericSink BER_LP delay setting of 1e5 with a value greater than 1e6.

For high priority stream BER measurements, users should replace all LP with HP.

Simulation Results

Simulation is under an AWGN channel with a carrier-to-noise ratio of 21.4 dB. Simulation results saved in DTV_DVBH_Demo_Hierarchical.dds are shown below.

Simulation Results

Benchmark

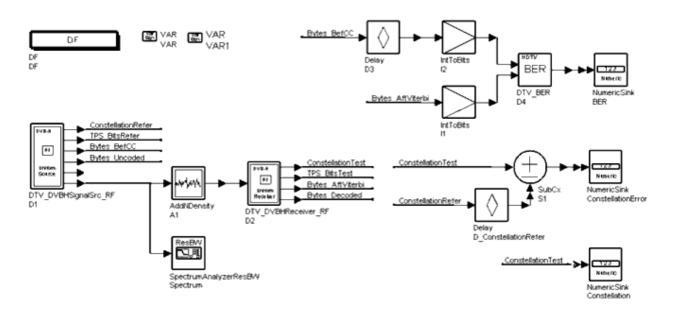
- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2004A
- Simulation Time: approximately 1 minute

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV DVB-H Non-Hierarchical Transmission

DTV_DVBH_Demo_Non_Hierarchical


Features

- Mode: 4k
- MappingMode: QPSK
- Inner interleaving: in-depth
- Inner code rate: 1/2
- Guard interval: 1/16
- Oversampling ratio: 1

Description

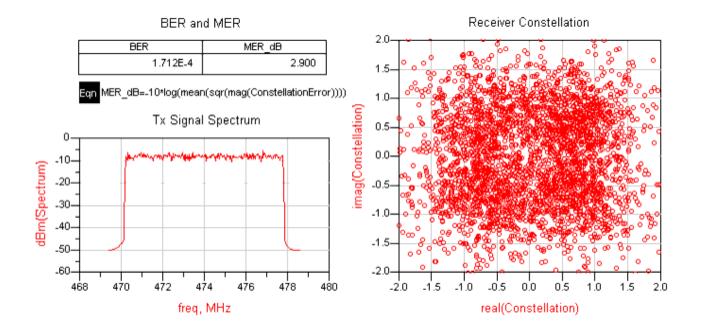
This design is a non-hierarchical transmission example of DVB-H spectrum, constellation, and MER and BER measurements under an AWGN channel. The schematic for this design is shown below.

DTV_DVBH_Demo_Non_Hierarchical Schematic

Parameters that can be changed by users are contained in VAR.

VAR1 contains delays needed for MER and BER measurements.

For BER measurements after Reed-Solomon decoding, users should:


- Replace Delay D3 component input signal Bytes_BefCC with Bytes_Uncoded.
- Replace IntToBits I1 component input signal Bytes_AftViterbi with Bytes_Decoded.

- Replace DTV_BER and NumericSink BER parameter settings Delay_AftVB × 2 with Delay_AftDescramble × 2.
- Replace NumericSink BER delay setting of 1e5 with a value greater than 1e6.

Simulation Results

Simulation is under an AWGN channel with a carrier-to-noise ratio of 4.9 dB. Simulation results saved in DTV_DVBH_Demo_Non_Hierarchical.dds are shown below.

Simulation Results

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2004A
- Simulation Time: approximately 2 minutes

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DVB-T Receiver Design Examples

DVB-T receiver design examples can be accessed from the ADS Main window *File > Open > Example > DTV*. Schematics and simulation results for designs in *DTV_DVBT_Rx_wrk* are described in this topic.

Receiver minimum input level sensitivity:

- DTV_DVBT_Rx_Sensitivity_Option1
- DTV_DVBT_Rx_Sensitivity_Option2

AWGN performance:

- DTV_DVBT_Rx_AWGN_Option1
- DTV_DVBT_Rx_AWGN_Option2

Protection ratio for co-channel PAL analog TV:

- DTV_DVBT_Rx_PAL_Cochannel_Option1
- DTV_DVBT_Rx_PAL_Cochannel_Option2

Protection ratio for adjacent channel PAL analog TV:

- DTV_DVBT_Rx_PAL_Adj_Option1
- DTV_DVBT_Rx_PAL_Adjl_Option2

Protection ratio for image channel PAL analog TV:

- DTV_DVBT_Rx_PAL_image_Option1
- DTV_DVBT_Rx_PAL_imagel_Option2

Short delay echo performance:

- DTV_DVBT_Rx_ShortDelay_Option1
- DTV_DVBT_Rx_ShortDelay_Option2

Long delay echo performance:

- DTV_DVBT_Rx_LongDelay_Option1
- DTV_DVBT_Rx_LongDelay_Option2

Single 0dB echo performance:

- DTV_DVBT_Rx_SingleEcho_Option1
- DTV_DVBT_Rx_SingleEcho_Option2

Immunity to impulse interference:

- DTV_DVBT_Rx_Impulse_Option1
- DTV_DVBT_Rx_Impulse_Option2

Multipath performance:

- DTV_DVBT_Rx_Rayleigh_Option1
- DTV_DVBT_Rx_Rayleigh_Option2
- DTV_DVBT_Rx_Ricean_Option1
- DTV_DVBT_Rx_Ricean_Option2

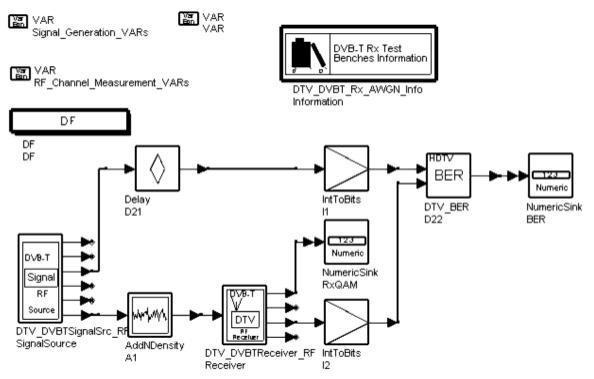
DVB-T AWGN Performance

DTV_DVBT_Rx_AWGN_Option1 DTV_DVBT_Rx_AWGN_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user

Features: Option 2 Design


- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user

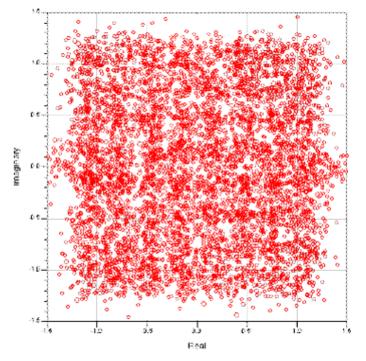
Description

These designs measure the performance of a DVB-T receiver with AWGN. BER is measured after Viterbi decoding.

The schematic is shown below.

DTV_DVBT_Rx_AWGN Schematic

Simulation Results

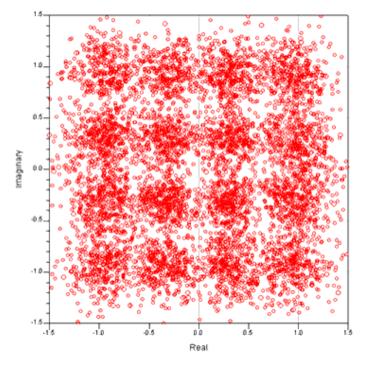

For Option 1, an 18.3 dB carrier-to-noise ratio is used. Simulation results displayed in DTV_DVBT_Rx_AWGN_Option1.dds are shown below.

BER for Option 1

Index	BER
1000	2.995E-4

The demodulated constellations are shown below.

Constellation for Option 1


For Option 2, a 13.8 dB carrier-to-noise ratio is used. Simulation results displayed in DTV_DVBT_Rx_AWGN_Option2.dds are shown below.

BER for Option 2

Index	BER
1000	2.489E-4

The demodulated constellation is shown below.

Constellation for Option 2

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 1 minute

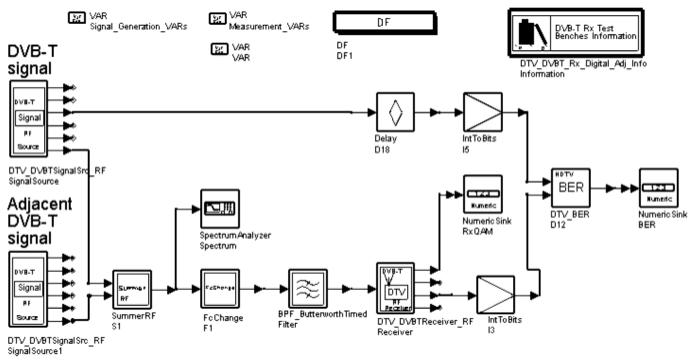
- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

DVB-T Digital Adjacent Channel Performance

DTV_DVBT_Rx_Digital_Adj_Option1 DTV_DVBT_Rx_Digital_Adj_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and Measurement_VARs parameters can be changed by the user


Features: Option 2 Design

- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and Measurement_VARs parameters can be changed by the user

Description

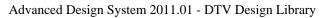
These designs measure the performance of a DVB-T receiver with a digital adjacent channel. BER is measured after Viterbi decoding. The schematic is shown below.

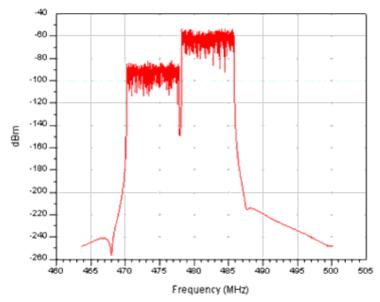
DTV_DVBT_Rx_Digital_Adj Schematic

Simulation Results

Option 1 uses a 30 dB adjacent channel signal interference level relative to the wanted DVB-T signal.

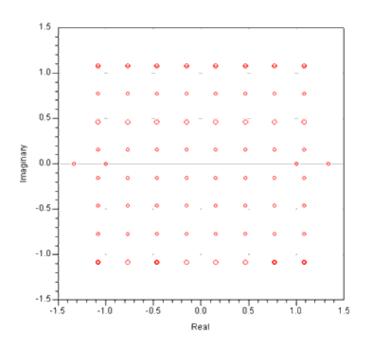
Option 2 uses a 32 dB adjacent channel signal interference level relative to the wanted DVB-T signal.

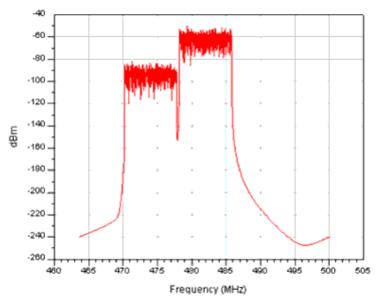

Simulation results displayed in DTV_DVBT_Rx_Digital_Adj_Option1.dds and DTV_DVBT_Rx_Digital_Adj_Option2.dds are shown below.


BER for Option 1 and Option 2

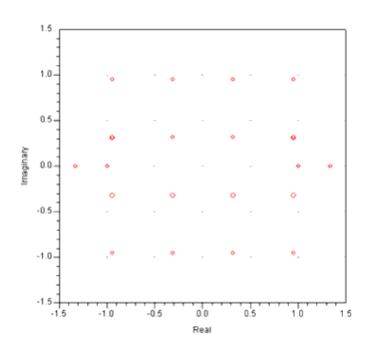
Index	BER
1000	0.000

The spectrum for Option 1 is shown below.


Spectrum for Option 1


The demodulated constellation is shown below.

Constellation for Option 1


The spectrum for Option 2 is shown below.

Spectrum for Option 2

The demodulated constellation is shown below.

Constellation for Option 2

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 5 minutes

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

DVB-T Impulse Interference Performance

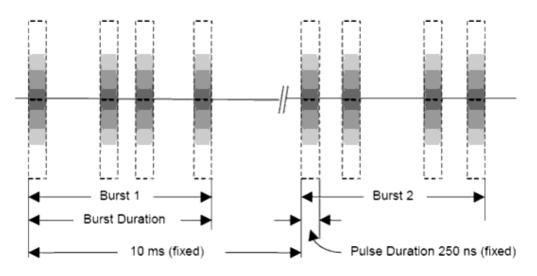
DTV_DVBT_Rx_Impulse_Option1 DTV_DVBT_Rx_Impulse_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user.

Features: Option 2 Design

- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user.

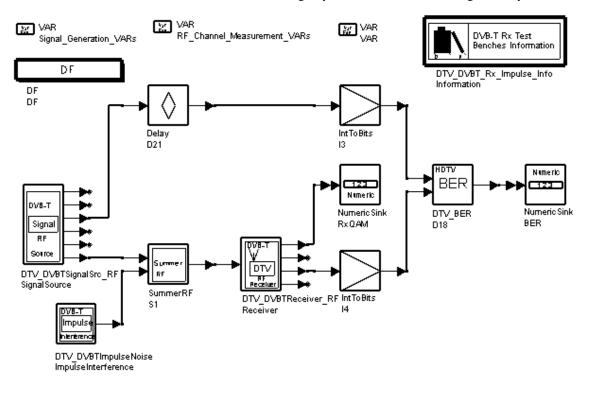

Description

These designs measure the performance of a DVB-T receiver with impulse interference. BER is measured after Viterbi decoding.

The impulse interference is made up of bursts that are generated by gating a Gaussian noise source. As shown below, separation of bursts is fixed at 10 msec and pulse duration is fixed at 250 nsec.

Impulse Noise Test Signal

Advanced Design System 2011.01 - DTV Design Library


These design supports the tests listed in the table below. The tolerance of the receiver to the test signal should exceed its tolerance to ungated Gaussian noise by a *tolerance factor* that is generally expressed in dB. The tolerance factor is independent of modulation mode, receiver implementation margin, and degradation criterion.

Test_No	Pulses per Burst	Pulse Spacing (µsec)	Burst Duration (µsec)	Tolerance Factor (dB)
1	1	0.25	0.25	29.5
2	2	20	40	26.5
3	4	20	80	23.5
4	12	12	144	18.7
5	20	1.5	30	16.5
6	40	0.75	30	13.5

Impulse Noise Tests and Theoretical Receiver Tolerance

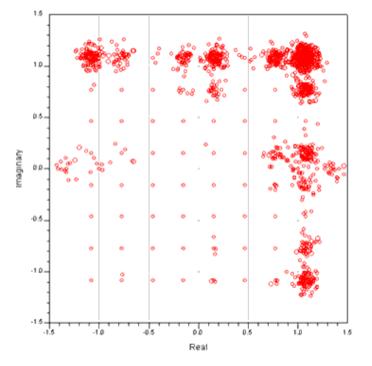
The schematic is shown below.

DTV_DVBT_Rx_Impulse Schematic

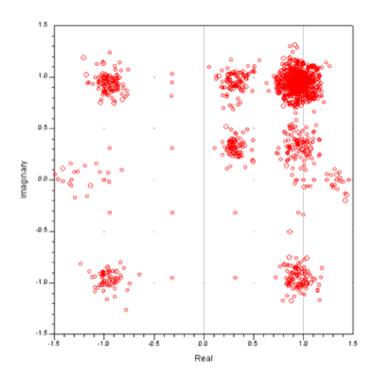
Simulation Results

Option 1 uses a 16.5 dB carrier-to-noise ratio and a tolerance factor of 23.5 dB.

Option 2 uses a 12.5 dB carrier-to-noise ratio and a tolerance factor of 23.5 dB.


Simulation results displayed in DTV_DVBT_Rx_Impulse_Option1.dds and DTV_DVBT_Rx_Impulse_Option2.dds are shown below.

BER for Option 1 and Option 2


Index	BER
1000	0.000

The demodulated constellations are shown in the figures below.

Constellation for Option 1

Constellation for Option 2

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
 Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 2 minutes

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

DVB-T Long Delay Channel Performance

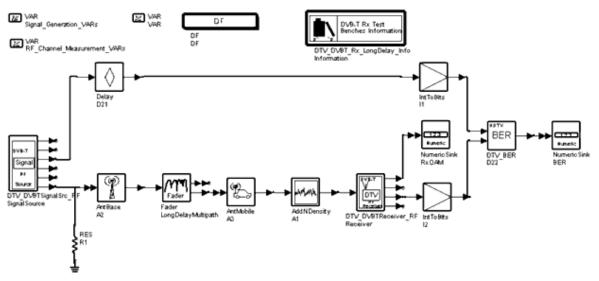
DTV_DVBT_Rx_LongDelay_Option1 DTV_DVBT_Rx_LongDelay_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be set by the user

Features: Option 2 Design

- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be set by the user

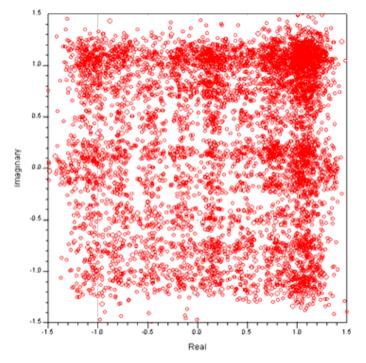

Description

These designs measure the performance of a DVB-T receiver with a long delay channel. The long delay combines 6 echoes. There is a dominant direct path and 5 echoes and one outside the guard interval. Path delay and attenuation of the long delay multipath channel are [0, 5, 14, 35, 54, 75] µsec and [0, 9, 22, 25, 27, 28] dB. The phase is set to 0 at channel center.

BER is measured after Viterbi decoding.

The schematic is shown below.

DTV_DVBT_Rx_LongDelay Schematic

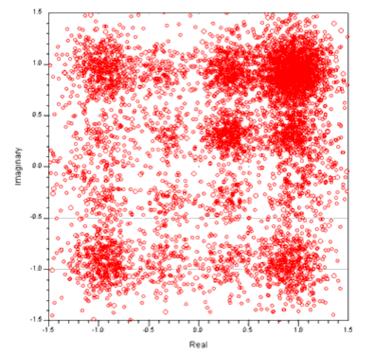

Simulation Results

Option 1 uses a 22.3 dB carrier-to-noise ratio. Simulation results displayed in DTV_DVBT_Rx_LongDelay_Option1.dds are shown below.

BER for Option 1

Index	BER
1000	2.133E-4

The demodulated constellations are shown below.



Option 2 uses a 15.8 dB carrier-to-noise ratio. Simulation results displayed in DTV_DVBT_Rx_LongDelay_Option2.dds are below.

BER for Option 2

BER
3.477E-4

The demodulated constellations are shown below.

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 15 minutes for Option 1 and 30 minutes for Option 2

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

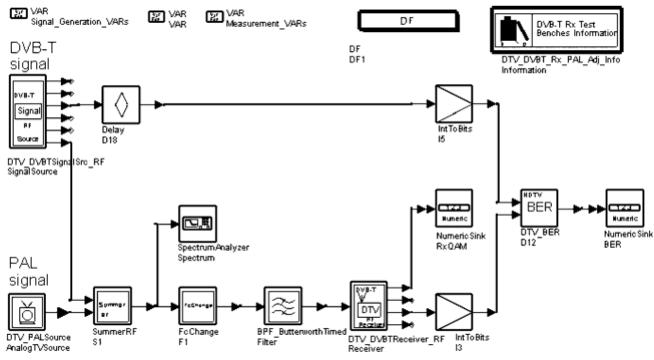
DVB-T Analog Adjacent Channel Performance

DTV_DVBT_Rx_PAL_Adj_Option1 DTV_DVBT_Rx_PAL_Adj_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and Measurement_VARs parameters can be set by the user

Features: Option 2 Design


- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and Measurement_VARs parameters can be set by the user

Description

These designs measure the protection ratio of an adjacent channel PAL signal. BER is measured after Viterbi decoding.

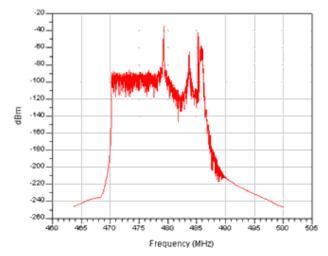
The schematic is shown below.

DTV_DVBT_Rx_PAL_Adj Schematic

Simulation Results

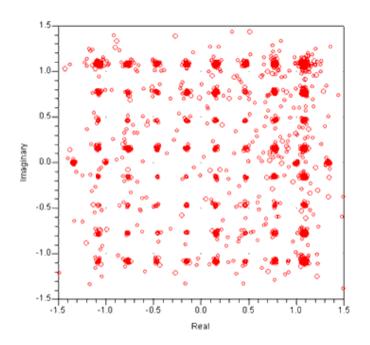
For Option 1, the adjacent channel PAL signal interference level relative to the wanted DVB-T signal is 35 dB.

For Option 2, the adjacent channel PAL signal interference level relative to the wanted DVB-T signal is 37 dB.

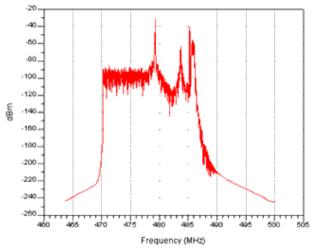

Simulation results displayed in DTV_DVBT_Rx_PAL_Adj_Option1.dds and DTV_DVBT_Rx_PAL_Adj_Option2.dds are shown below.

BER for Option 1 and Option 2

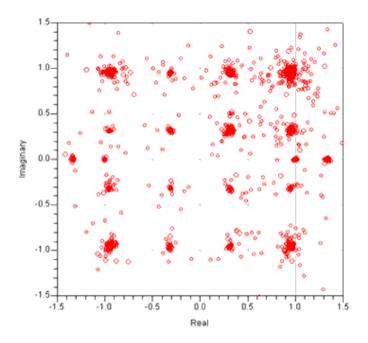
Index	BER
1000	0.000


For Option 1, the spectrum is shown below.

Spectrum for Option 1


The demodulated constellation is shown below.

Constellation for Option 1


For Option 2, the spectrum is shown below.

Spectrum for Option 2

The demodulated constellation is shown below.

Constellation for Option 2

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 10 minutes

References

1. ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and

modulation for digital terrestrial television. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

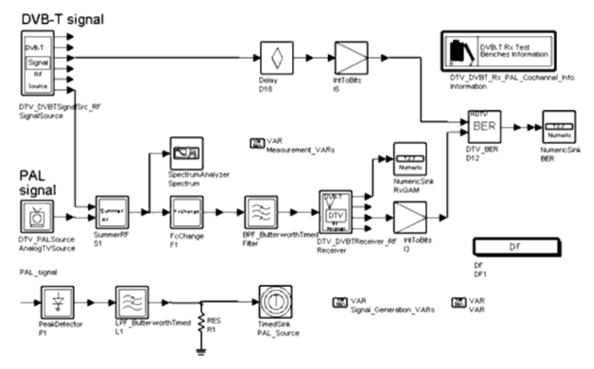
DVB-T Analog Co-Channel Performance

DTV_DVBT_Rx_PAL_Cochannel_Option1 DTV_DVBT_Rx_PAL_Cochannel_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and Measurement_VARs parameters can be set by the user

Features: Option 2 Design


- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and Measurement_VARs parameters can be set by the user

Description

These designs measure the protection ratio of a co-channel PAL signal. BER is measured after Viterbi decoding.

The schematic is shown below.

DTV_DVBT_Rx_PAL_Cochannel Schematic

Simulation Results

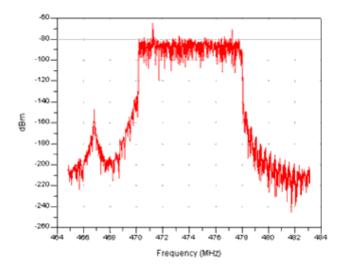
For Option 1, the co-channel PAL signal interference level relative to the wanted DVB-T signal is 0 dB. Simulation results displayed in DTV_DVBT_Rx_PAL_Cochannel_Option1.dds are shown below.

BER for Option 1

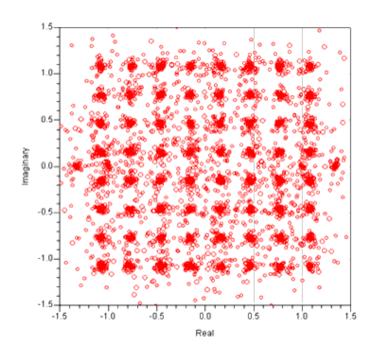
Index	BER
1000	2.852E-4

For Option 2, the co-channel PAL signal interference level relative to the wanted DVB-T signal is 0 dB. Simulation results displayed in DTV_DVBT_Rx_PAL_Cochannel_Option2.dds are shown below.

BER for Option 2

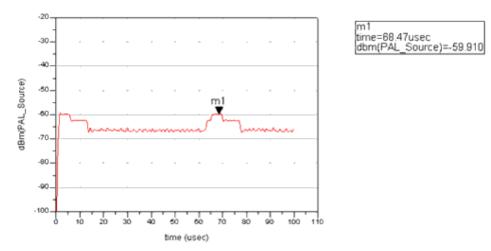

 Index
 BER

 1000
 8.155E-4

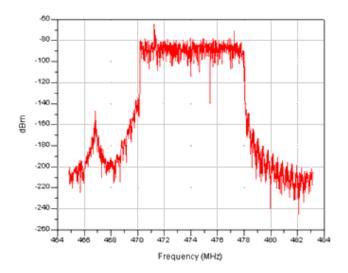

For Option 1, the spectrum is shown below.

Spectrum for Option 1

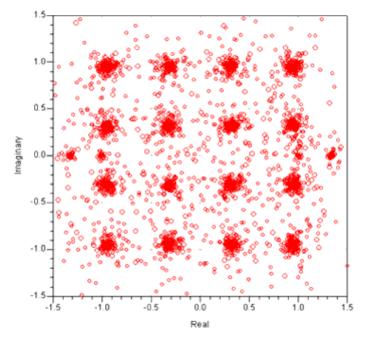
Constellation for Option 1



The demodulated constellation is shown below.

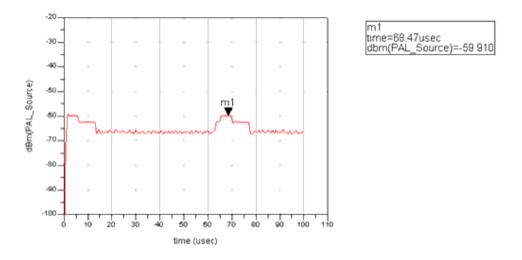

The PAL source peak power shown below is -59.910 dBm, which is the same as the schematic setting.

PAL Source Peak Power for Option 1



For Option 2, the demodulated constellation is shown below.

Spectrum for Option 2



The demodulated constellation is shown below.

The PAL source peak power shown below is -59.910 dBm, which is the same as the schematic setting.

PAL Source Peak Power for Option 2

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 5 minutes

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

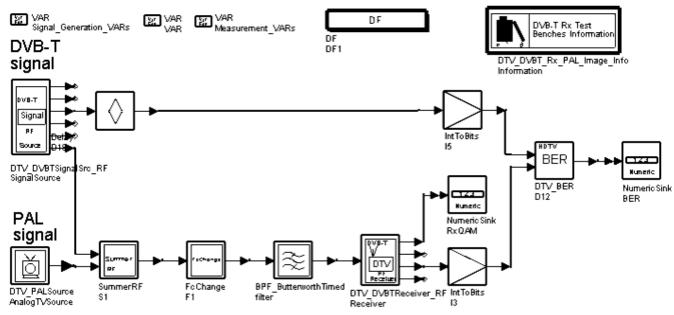
DVB-T Image Channel Performance

DTV_DVBT_Rx_PAL_Image_Option1 DTV_DVBT_Rx_PAL_Image_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and Measurement_VARs parameters can be set by the user

Features: Option 2 Design


- 2K mode
- 16-QAM mapping
- Coding rate is 3/4
- Guard interval is 1/32
- Signal_Generation_VARs and Measurement_VARs parameters can be set by the user

Description

These designs measure the protection ratio of an image channel PAL signal.

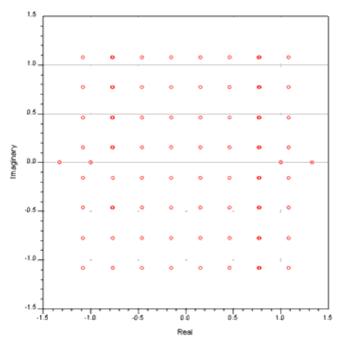
The schematic is shown below.

DTV_DVBT_Rx_PAL_Image Schematic

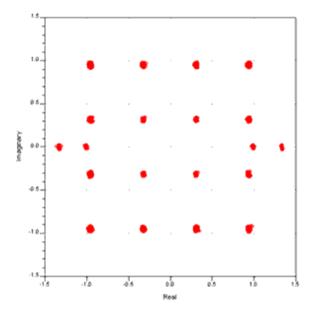
Simulation Results

BER is measured after Viterbi decoding.

For Option 1, the image channel PAL signal interference level relative to wanted DVB-T signal is 46 dB.


For Option 2, the image channel PAL signal interference level relative to wanted DVB-T signal is 50 dB.

Simulation results displayed in DTV_DVBT_Rx_PAL_Image_Option1.dds and DTV_DVBT_Rx_PAL_Image_Option2.dds are shown below.


BER for Option 1 and Option 2

Index	BER
1000	0.000

For Option 1, the demodulated constellation is shown below.

For Option 2, the demodulated constellation is shown below.

Constellation for Option 2

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 6 hours for Option 1 and 9 hours for Option 2

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

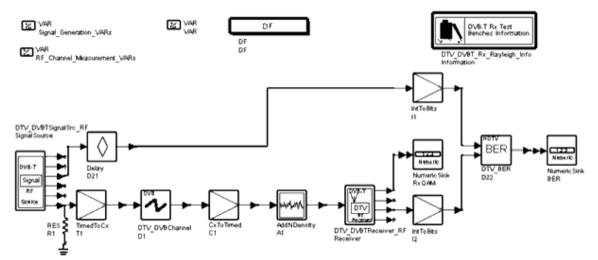
DVB-T Rayleigh Channel (P1) Performance

DTV_DVBT_Rx_Rayleigh_Option1 DTV_DVBT_Rx_Rayleigh_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user

Features: Option 2 Design

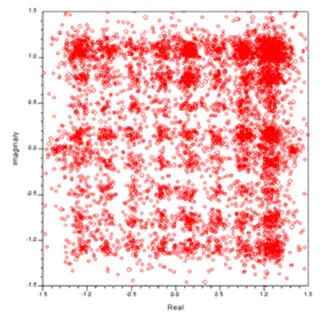

- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user

Description

These designs measure the performance of a DVB-T receiver with a Rayleigh channel (P1).

BER is measured after Viterbi decoding. The schematic is shown below.

DTV_DVBT_Rx_Rayleigh Schematic

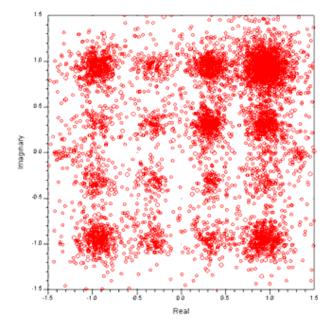

Simulation Results

For Option 1, a 22.6 dB carrier-to-noise ratio is used. Simulation results displayed in DTV_DVBT_Rx_Rayleigh_Option1.dds are shown below.

BER for Option 1

Index	BER
1000	4.108E-4

The demodulated constellation is shown below.



For Option 2, a 19.1 dB carrier-to-noise ratio is used. Simulation results displayed in DTV_DVBT_Rx_Rayleigh_Option2.dds are shown below.

BER for Option 2

Index	BER
1000	3.402E-4

The demodulated constellation is shown below.

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 1 minute

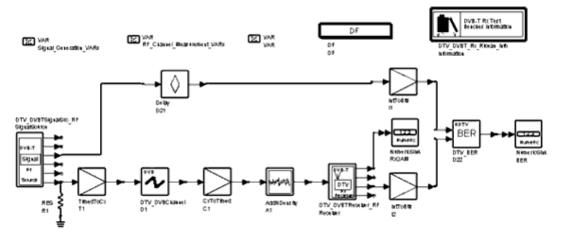
- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

DVB-T Ricean Channel (F1) Performance

DTV_DVBT_Rx_Ricean_Option1 DTV_DVBT_Rx_Ricean_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user

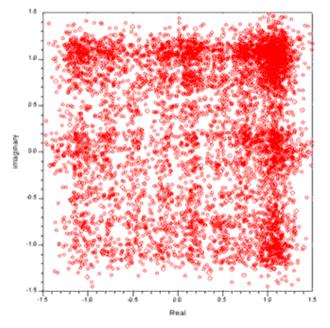

Features: Option 2 Design

- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user

Description

These designs measure the performance of a DVB-T receiver with a Ricean channel (F1). BER is measured after Viterbi decoding. The schematic is shown below.

DTV_DVBT_Rx_Ricean Schematic

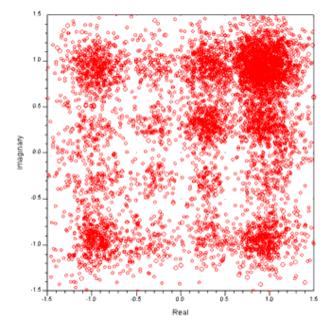

Simulation Results

For option 1, a 19.4 dB carrier-to-noise ratio is used. Simulation results displayed in DTV_DVBT_Rx_Ricean_Option1.dds are shown below.

BER for Option 1

Index	BER
1000	2.202E-4

The demodulated constellation is shown below.



For option 2, a 14.9 dB carrier-to-noise ratio is used. Simulation results displayed in DTV_DVBT_Rx_Ricean_Option2.dds are shown below.

BER for Option 2

Index	BER
1000	2.675E-4

The demodulated constellation is shown below.

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 1 minute

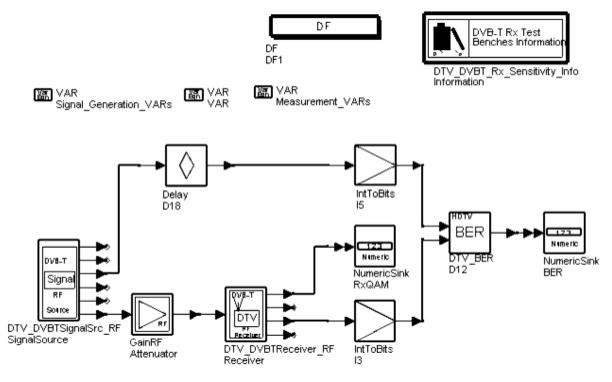
- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

DVB-T Receiver Minimum Input Level Sensitivity

DTV_DVBT_Rx_Sensitivity_Option1 DTV_DVBT_Rx_Sensitivity_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and Measurement_VARs parameters can be changed by the user


Features: Option 2 Design

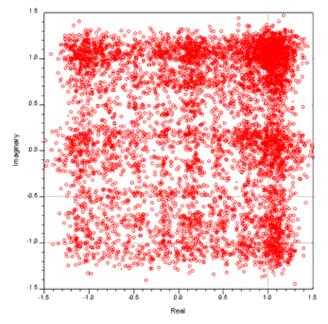
- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and Measurement_VARs parameters can be changed by the user

Description

These designs measure the performance of a DVB-T receiver with minimum input level sensitivity. BER is measured after Viterbi decoding. The schematic is shown below.

DTV_DVBT_Rx_Sensitivity Schematic

Simulation Results

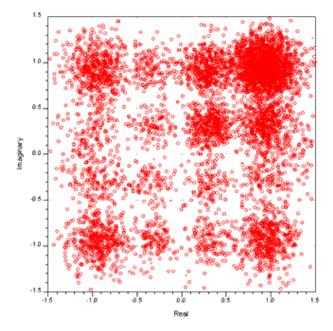

BER is measured after Viterbi decoding.

Option 1 uses a signal power level of -77.9 dBm. Simulation results displayed in DTV_DVBT_Rx_Sensitivity_Option1.dds are shown below.

BER for Option 1

Index	BER
1000	1.388E-5

The demodulated constellation is shown below.



Option 2 uses a signal power level of -82.1 dBm. Simulation results displayed in DTV_DVBT_Rx_Sensitivity_Option2.dds are shown below.

BER for Option 2

Index	BER
1000	7.518E-6

The demodulated constellation is shown below.

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 1 minute

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

DVB-T Short Delay Channel Performance

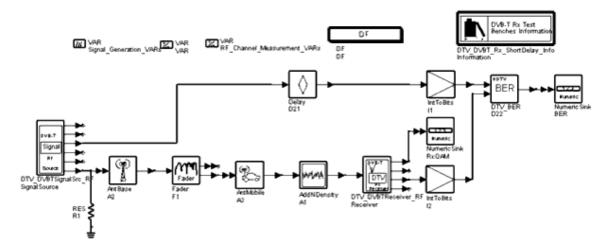
DTV_DVBT_Rx_ShortDelay_Option1 DTV_DVBT_Rx_ShortDelay_Option2

Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user

Features: Option 2 Design

- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user


Description

These designs measure the performance of a DVB-T receiver with a short delay channel. The short delay combines 6 echoes. All echoes are within the guard interval and none is dominant: there is no *direct* path. Path delay and attenuation of the short delay multipath channel are [0, 0.05, 0.4, 1.45, 2.3, 2.8] µsec and [2.8, 0.0, 3.8, 0.1, 2.6, 1.3] dB. The phase is set to 0 at the channel center.

BER is measured after Viterbi decoding.

The schematic is shown below.

DTV_DVBT_Rx_ShortDelay Schematic

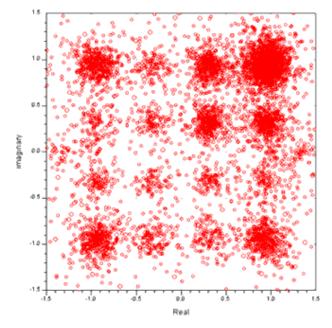
Simulation Results

Option 1 has a carrier-to-noise ratio of 22.3 dB. Simulation results displayed in $DTV_DVBT_Rx_ShortDelay_Option1.dds$ are shown below.

BER for Option 1

Index	BER
1000	1.420E-4

The demodulated constellation is shown below.



Option 2 has a carrier-to-noise ratio of 18.8 dB. Simulation results displayed in DTV_DVBT_Rx_ShortDelay_Option2.dds are shown below.

BER for Option 2

Index	BER
1000	1.034E-4

The demodulated constellation is shown below.

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 15 minutes for Option 1 and 25 minutes for Option 2

References

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

DVB-T Single Echo Channel Performance

DTV_DVBT_Rx_SingleEcho_Option1 DTV_DVBT_Rx_SingleEcho_Option2

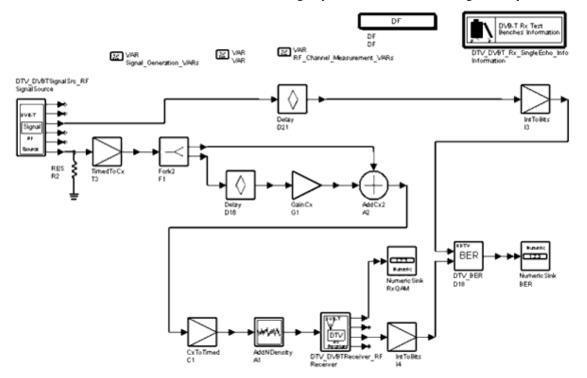
Features: Option 1 Design

- 2K mode
- 64-QAM mapping
- 2/3 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user

Features: Option 2 Design

- 2K mode
- 16-QAM mapping
- 3/4 coding rate
- 1/32 guard interval
- Signal_Generation_VARs and RF_Channel_Measurement_VARs parameters can be changed by the user

Description


These designs measure the performance of a DVB-T receiver with a single echo channel. Path delay of the echo channel is $3.5 \ \mu$ sec and the attenuation is 0 dB. The echo phase is set to 90 at the channel center.

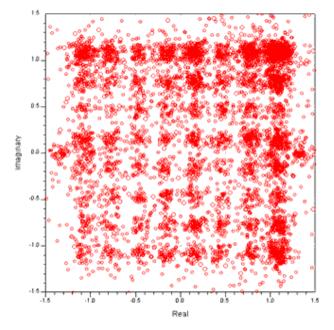
BER is measured after Viterbi decoding.

The schematic is shown below.

DTV_DVBT_Rx_SingleEcho Schematic

Advanced Design System 2011.01 - DTV Design Library

Simulation Results


For option 1, a carrier-to-noise ratio of 23.1 dB is used. Simulation results displayed in DTV_DVBT_Rx_SingleEcho_Option1.dds are shown below.

BER for Option 1

Index	BER
1000	1.937E-4

The demodulated constellation is shown below.

Constellation for Option 1


For option 2, a carrier-to-noise ratio of 21.3 dB is used. Simulation results displayed in DTV_DVBT_Rx_SingleEcho_Option2.dds are shown below.

BER for Option 2

Γ	Index	BER
Γ	1000	2.005E-4

The demodulated constellation is shown below.

Constellation for Option 2

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2003C
- Simulation Time: approximately 2 minutes

References

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. DTG RF Sub-Group Document No. 67, UHF Transmission and Reception.

DVB-T System Design Examples

DVB-T design examples can be accessed from the ADS Main window *File > Open > Example > DTV*. Schematics and simulation results for the following workspaces are described in this section.

DTV_DVBOFDM_wrk

- DsnDTV_DVBOFDM_16QAM
- DsnDTV_DVBOFDM_64QAM
- DsnDTV_DVBOFDM_PALInterference

DTV_DVBSystem_wrk

- DsnDTV_DVBSystem_16QAM
- DsnDTV_DVBSystem_Hier64QAM
- DsnDTV_DVBOFDM_16QAM_BER

DTV OFDM

OFDM 16-QAM Modulation and Demodulation in DVB-T Systems

DTV_DVBOFDM_wrk Design Name

DsnDTV_DVBOFDM_16QAM

Features

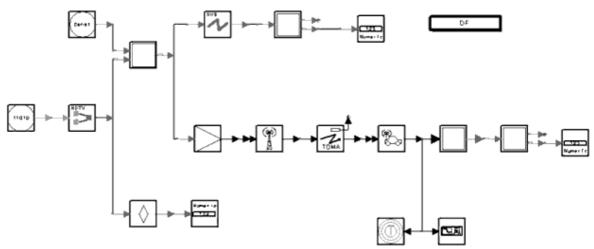
- 16-QAM modulation and demodulation
- TDMA multipath fading channel with Doppler shift. The type of multipath can be selected; Doppler shift can be determined by the mobile speed setting.
- Comparison of DVB and TDMA channel system performance

Description

This example design provides modulation, transmission, and demodulation via a TDMA channel with Doppler shift and DVB channel. Modulation mapping is 16-QAM; the guard interval ratio is 1/16.

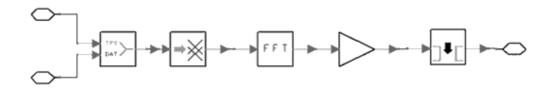
After 16-QAM data mapping, OFDM symbols are formed by adding TPS data and pilots. 2048-point inverse FFT (IFFT) is performed. After inserting the guard interval, the complex signal is transmitted; the transmitted signal length is 2048+guard interval.

In the receiver, the FFT starting point is determined by the autocorrection function of the received signal. After FFT, the transmitted signal is recovered by the frequency equalizer. According to the DVB-T, the mapped data is received. Data is recovered by the 16-QAM demodulator.

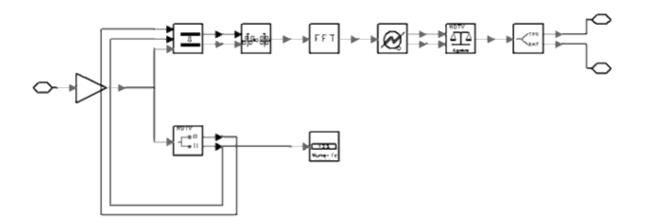

Performance can be viewed in data display files such DsnDTV_DVBOFDM_16QAM and DsnDTV_DVBOFDM_16QAM_EVM.

Schematics

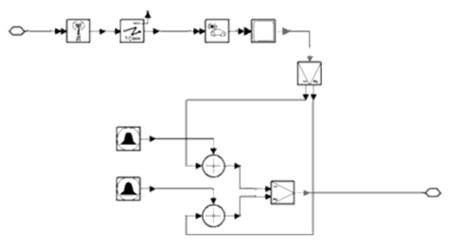
The schematic for this design is shown below.


DTV_DVBOFDM_16QAM

Advanced Design System 2011.01 - DTV Design Library



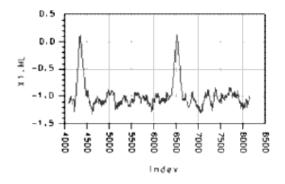
Three subnetworks are used in this design; they are shown below.


sub_DVBOFDM_Mod

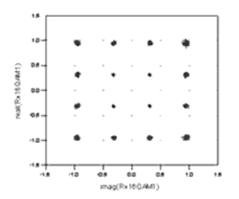
sub_DVBOFDM_Demod

sub_TDMAChannel

Specifications

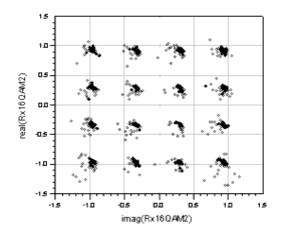

Symbol (Model)	Specification (Parameter)	Simulation Type	Value
RxSpectrum	Stop	ADS Ptolemy	224 × (2048+128)/2048 × 2 µsec
RxSignal	Stop	ADS Ptolemy	224 × (2048+128)/2048 µsec
PropNADCtdma	Туре	ADS Ptolemy	TwoPath
PropNADCtdma	Pathloss	ADS Ptolemy	No
PropNADCtdma	Env	ADS Ptolemy	TypicalSuburban
PropNADCtdma	Delay	ADS Ptolemy	0.5 µsec
PropNADCtdma	Test	ADS Ptolemy	Tap1
AntMobile	Vx	ADS Ptolemy	100.0 km/hr
AntMobile	Vy	ADS Ptolemy	0.0 km/hr

Notes


- 1. In this example, the guard interval ratio is 1/16, so the guard interval is 128. (According to DVB-T, in the 2K mode the guard interval is 64, 128, 256, or 512, which corresponds to 1/32, 1/16, 1/8, or 1/4 guard interval ratio, respectively.)
- 2. All parameters are related to the guard interval (except TDMA channel parameters). If the guard interval is changed, parameters will be changed to the corresponding values.
- 3. The TDMA channel condition varies according to channel parameter modification. Parameters include Type, Pathloss, Env, Delay, and Test in the PropNADCtdma model, and Vx and Vy in the AntMobile model.

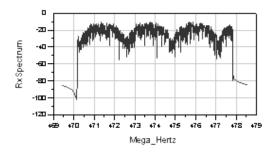
Simulation Results

The figure below shows the magnitude of ML function of received signal used to find the FFT start. The maximum value appears in every (2048+128) points, the point of the maximum magnitude value is the FFT start.

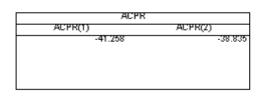


The figure below shows the received constellation after OFDM demodulation via DVB channel. Results show the hard decision before the 16-QAM demodulation is correct

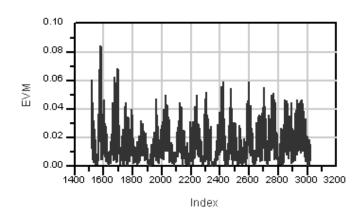
Received Constellation After OFDM Demodulation


The figure shows the received constellation after OFDM demodulation via TDMA channel. Results show OFDM system performance

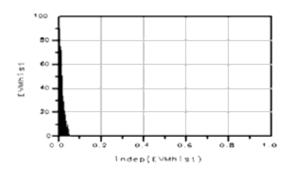
Received Constellation after OFDM Demodulation


The figure below shows the spectrum of the wireless channel signal; center frequency is 474 MHz.

Spectrum of Signal Received from Wireless Channel


The figure below shows the adjacent-channel power ratio. The equation is: ACPR=acpr_vr(DsnDTV_DVBOFDM_16QAM..RxSignal,50.0, {-3.9MHz,3.9MHz},{-12MHz,-4.25MHz},{4.25MHz,12MHz})

Adjacent-Channel Power Ratio


The figure below shows the relative magnitude error, which is defined as: EVM=mag(DsnDTV_DVBOFDM_16QAM..Rx16QAM1-DsnDTV_DVBOFDM_16QAM.Tx16QAM)/mean(mag(DsnDTV_DVBOFDM_16QAM..Tx16QAM)).

Relative Magnitude Error

The figure below shows the EVM histogram, which shows most EVM < 0.1. EVMhist is defined as: EVMhist=histogram(EVM,1001,0.0,1.0)

EVM Histogram

Benchmark

- Hardware Platform: Pentium II 200 MHz, 96 MB memory
- Software Platform: Windows NT 4.0 Workstation, ADS 1.3
- Data Points: 10 OFDM symbols
- Simulation Time: 34 seconds

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

OFDM 64-QAM Modulation and Demodulation in DVB-T Systems

DTV_DVBOFDM_wrk Design Name

DsnDTV_DVBOFDM_64QAM

Features

- 64-QAM modulation and demodulation
- TDMA multipath fading channel with Doppler shift. The type of multipath can be

Advanced Design System 2011.01 - DTV Design Library

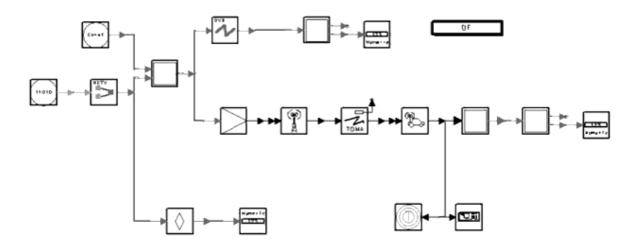
selected; Doppler shift can be determined by the mobile speed setting.

DVB and TDMA channel performance comparison

Description

This example design provides modulation, transmission and demodulation via a TDMA channel with Doppler shift and DVB channel. Modulation mapping is 64-QAM; the guard interval ratio is 1/16.

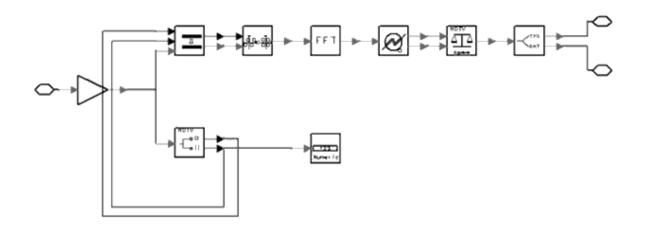
After 64-QAM data mapping, OFDM symbols are formed by adding TPS data and pilots. 2048-point inverse FFT (IFFT) is performed. After inserting the guard interval, the complex signal is transmitted. Transmitted signal length is 2048+guard interval.

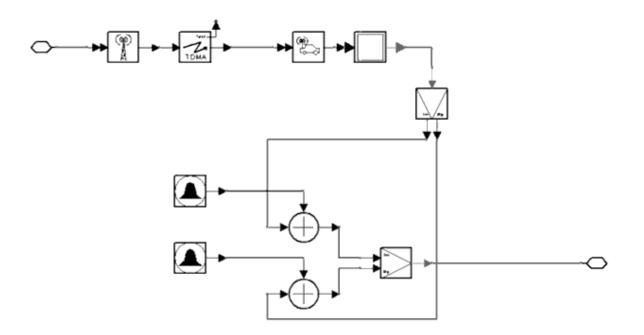

In the receiver, the FFT starting point is determined by the autocorrection function of the received signal. After FFT, the transmitted signal is recovered by the frequency equalizer. According to the DVB-T, the mapped data is received. Data is recovered by the 64-QAM demodulator.

Performance can be viewed in the data display files such as DsnDTV_DVBOFDM_64QAM and DsnDTV_DVBOFDM_64QAM_EVM.

Schematics

The figure below shows the schematic for this design.


DTV_DVBOFDM_64QAM


Three subnetworks are used in this design; they are shown below.

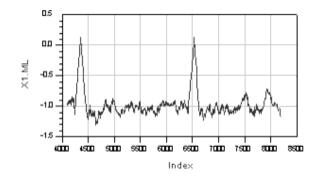
sub_DVBOFDM_Demod

sub_TDMAChannel

Specifications

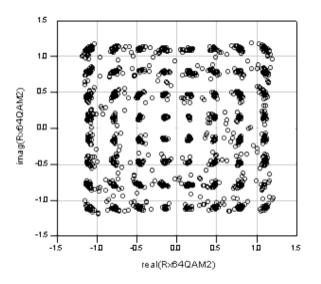
Advanced Design System 2011.01 - DTV Design Library

Symbol (Model)	Specification (Parameter)	Simulation Type	Value
RxSpectrum	Stop	ADS Ptolemy	224 × (2048+128)/2048 × 2 µsec
RxSignal	Stop	ADS Ptolemy	224 × (2048+128)/2048 µsec
PropNADCtdma	Туре	ADS Ptolemy	TwoPath
PropNADCtdma	Pathloss	ADS Ptolemy	No
PropNADCtdma	Env	ADS Ptolemy	TypicalSuburban
PropNADCtdma	Delay	ADS Ptolemy	2.5 µsec
PropNADCtdma	Test	ADS Ptolemy	Tap1
AntMobile	Vx	ADS Ptolemy	30.0 km/hr
AntMobile	Vy	ADS Ptolemy	0.0 km/hr

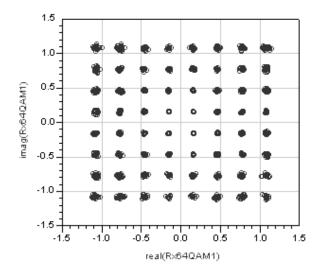

Notes

- 1. In this example, the guard interval ratio is 1/16, so the guard interval is 128. (According to DVB-T, in the 2K mode the guard interval is 64, 128, 256, or 512, which corresponds to 1/32, 1/16, 1/8, or 1/4 guard interval ratio, respectively.)
- All parameters are related to the guard interval (except TDMA channel parameters). If the guard interval is changed, parameters will be changed to the corresponding values.
- 3. The TDMA channel condition varies according to channel parameter modification. Parameters include Type, Pathloss, Env, Delay, and Test in the PropNADCtdma model, and Vx and Vy in the AntMobile model.

Simulation Results

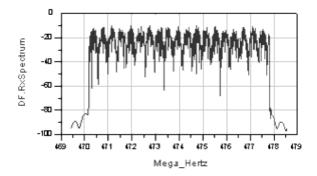

The figure below shows the magnitude of the ML function of the received signal used to find the FFT start point. The maximum value appears in every (2048+128) points, the point of the maximum magnitude value is the starting point of the FFT.

Maximum Likelihood Magnitude

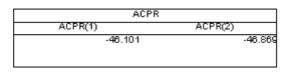


The figure below shows the received constellation after OFDM demodulation via TDMA channel. Results show the hard decision before the 64-QAM demodulation is correct.

Received Constellation After OFDM Demodulation Via TDMA Channel

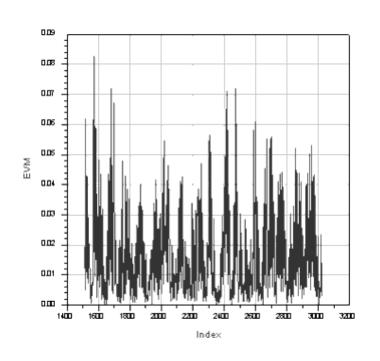

The figure below shows the received constellation after OFDM demodulation via DVB channel. Results show OFDM system performance.

Received Constellation After OFDM Demodulation Via DVB Channel

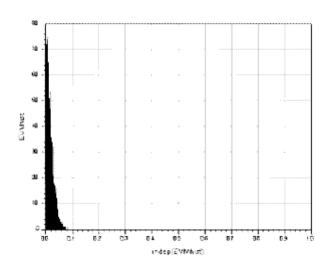

The figure below shows the spectrum of wireless channel signal received. Center frequency is 474 MHz.

Spectrum of Wireless Channel Signal Received

The figure below shows adjacent-channel power ratio. The equation is: ACPR=acpr_vr(DsnDTV_DVBOFDM_64QAM..RxSignal, 50.0,{-3.9MHz,3.9MHz},{-12MHz,-4.25MHz},{4.25MHz,12MHz}).


Adjacent-Channel Power Ratio

The figure below shows the relative magnitude error, which is defined as: EVM=mag(DsnDTV_DVBOFDM_64QAM..Rx64QAM1-


DsnDTV_DVBOFDM_64QAM..Tx64QAM)/mean(mag(DsnDTV_DVBOFDM_64QAM..Tx64QAM))

Relative Magnitude Error

$\label{eq:constraint} \begin{array}{l} \mbox{Advanced Design System 2011.01 - DTV Design Library} \\ \mbox{The figure below shows the EVM histogram, which shows most EVM < 0.1. The EVMhist is defined as: EVMhist=histogram(EVM,1001,0.0,1.0) \end{array}$

EVM Histogram

Benchmark

- Hardware Platform: Pentium II 200 MHz, 96 MB memory
- Software Platform: Windows NT 4.0 Workstation, ADS 1.3
- Data Points: 10 OFDM symbols
- Simulation Time: 34 seconds

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

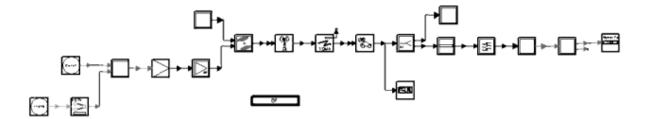
OFDM, 64-QAM DTV and PAL Signal Interference Test in DTV Systems

DTV_DVBOFDM_wrk Design Name

DsnDTV_DVBOFDM_PALInterference

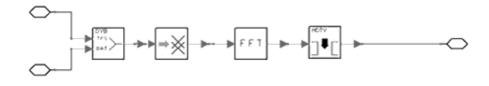
Features

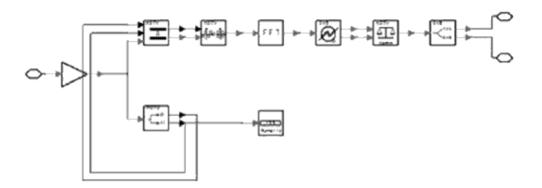
- 64-QAM modulation and demodulation
- Adjacent channel interference between analog PAL TV signal and digital DVB-T signal
- Compares analog PAL TV signal and received PAL TV signal that has adjacent channel DVB-T signal interference
- Constellation of received DVB-T signal with adjacent channel PAL signal interference


Description

This design is an OFDM example that tests the adjacent channel interference between the analog PAL TV signal and the digital DVB-T signal. The DVB-T signal has weak interference but the analog TV signal experiences strong interference. This effect is saved Data Display (DsnDTV_DVBOFDM_PALInterference1.dds). The center frequency of DVB-T is 482 MHz. The PAL spectrum experiences adjacent channel interference at higher frequency.

Schematics

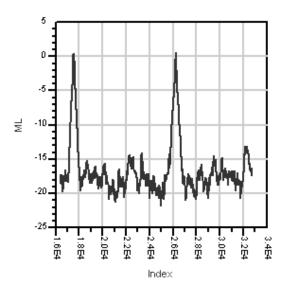

The figure below shows the schematic for this design.


DsnDTV_DVBOFDM_PALInterference

Two subnetworks are used in this design; they are shown below.

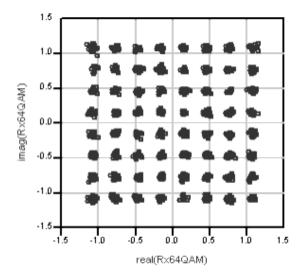
sub_OFDM_Mod

Specifications

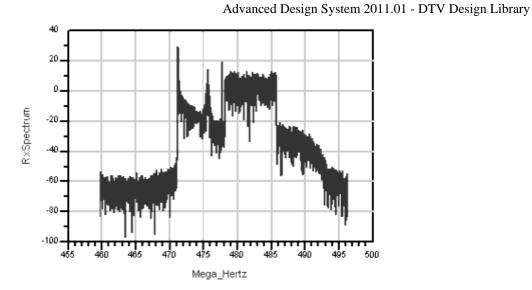

Specification (Parameter)	Simulation Type	Value
IFFTSize	ADS Ptolemy	2048 × 4
FFTSize	ADS Ptolemy	2048 × 4
GuardInterval	ADS Ptolemy	128 × 4
IFFTOrder	ADS Ptolemy	13
FFTOrder	ADS Ptolemy	13
MaxDelay	ADS Ptolemy	2048 × 4

Notes

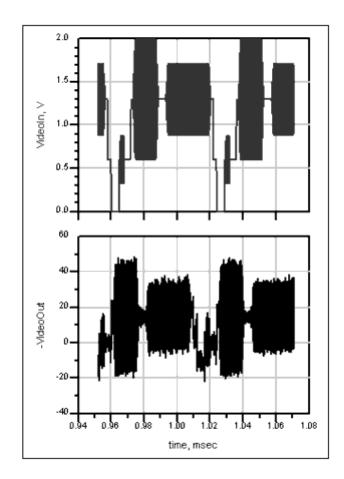
- 1. In this example, the guard interval ratio is 1/16, so the guard interval is 128. (According to DVB-T, in the 2K mode the guard interval is 64, 128, 256, or 512, which corresponds to 1/32, 1/16, 1/8, or 1/4 guard interval ratio, respectively.)
- Except for TDMA channel parameters, all parameters are related to the guard interval. If the guard interval is changed, they will be changed to the corresponding values.
- 3. The TDMA channel condition varies according to channel parameter modification. Parameters include Type, Pathloss, Env, Delay, and Test in the PropNADCtdma model, and Vx and Vy in the AntMobile model.


Simulation Results

The figure below shows the ML (maximum likelihood) magnitude which shows the magnitude of ML function of the received signal used to find the FFT starting point. The maximum value appears in every 4 × (2048+128) points; the maximum magnitude value is the FFT starting point.



The figure below shows the received QAM constellation after OFDM demodulation via TDMA channel with adjacent band PAL signal interference.


Received 64-QAM Constellation after OFDM Demodulation Via TDMA Channel

Spectrum of Signal Received from Wireless Channel

Comparison of PAL Video Input Signal and Output Signal with Adjacent Band DVB-T Signal Interference

Benchmark

• Hardware Platform: Pentium II 200 MHz, 96 MB memory

Advanced Design System 2011.01 - DTV Design Library

- Software Platform: Windows NT 4.0 Workstation, ADS 1.3
- Data Points: 10 OFDM symbols
- Simulation Time: 2 hours

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV DVB System

OFDM 16-QAM DVB-T System without Channel Coding BER

DTV_DVBSystem_wrk Design Name

DsnDTV_DVBOFDM_16QAM_BER

Features

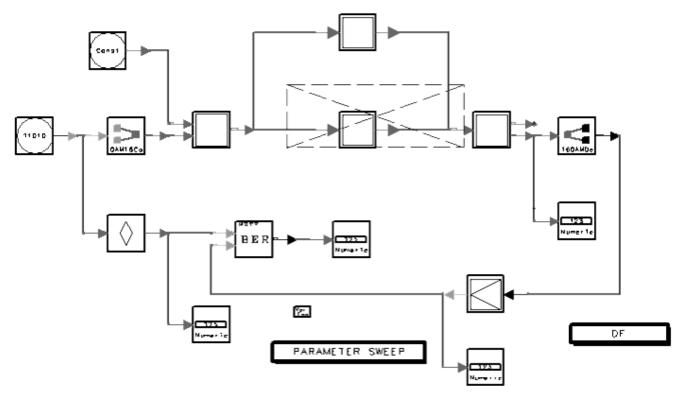
- 16-QAM modulation and demodulation
- Guard interval
- Displays include:

ML (maximum likelihood) estimation for OFDM frame synchronization, Angle (phase offset due to carrier frequency) for OFDM carrier synchronization, TxBit, RxBit, and Rx16QAM

• BER performance test for Gaussian, Ricean, and Rayleigh channels

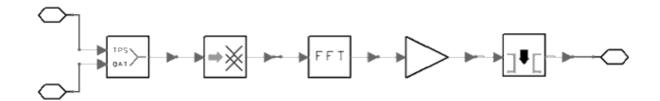
Description

This OFDM adaptation for DVB-T 2K mode design example tests the BER without channel coding. Modulation mapping is 16-QAM; the guard interval ratio is 1/16.

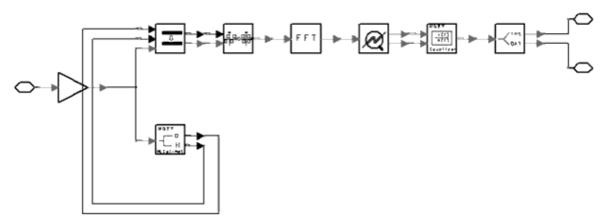

Simulation results can be compared to those of DsnDTV_DVBSystem_16QAM, which tests the BER with channel coding and interleaving.

Schematics

The figure below shows the schematic for this design.


DsnDTV_DVBOFDM_16QAM_BER

Advanced Design System 2011.01 - DTV Design Library



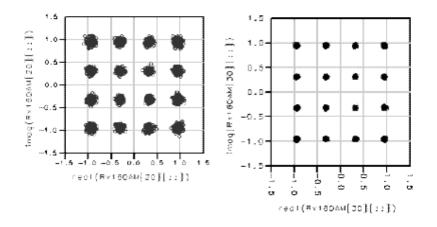
Two subnetworks are used in this design; they are shown below.

sub_DVBOFDM_Mod

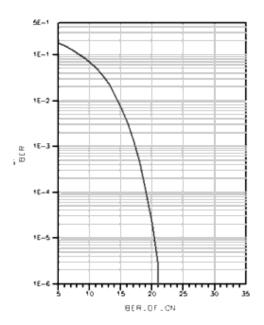
sub_DVBOFDM_Demod

Specifications

Symbol (Model)	Specification (Parameter)	Simulation Type	Value
	Carriers	ADS Ptolemy	1705
	Data	ADS Ptolemy	1512
	IFFTSize	ADS Ptolemy	2048
	FFTSize	ADS Ptolemy	2048
	Guard	ADS Ptolemy	128
	IFFTOrder	ADS Ptolemy	11
	FFTOrder	ADS Ptolemy	11
	MaxDelay	ADS Ptolemy	2047
DTV_DVBChannel	SampleTime	ADS Ptolemy	224.0e-6/2048


Notes

- 1. In this example, the guard interval ratio is 1/16, so the guard interval is 128. (According to DVB-T, in the 2K mode the guard interval is 64, 128, 256, or 512, which corresponds to 1/32, 1/16, 1/8, or 1/4 guard interval ratio, respectively.)
- 2. This design can be used for three different simulations: Gaussian channel, Ricean channel (F1) and Rayleigh channel.


Simulation Results

• Additive white Gaussian noise was added to set the carrier-to-noise (CN) ratio at the input of the receiver. <u>Constellation of OFDM Demodulation Signal at Different CN</u> shows the received constellation after OFDM demodulation when the CN is 15dB and 25dB in Gaussian channel simulation. The results show the higher CN is better than the lower.

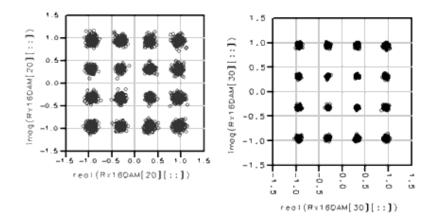
Gaussian Channel BER shows the BER at different CN.

Gaussian Channel BER

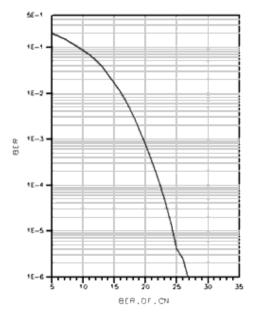
Ricean channel

Measurements of BER vs. CN were made using a Ricean channel simulator. The channel parameter is from DVB-T. In our DTV simulation system, this Ricean channel is simulated by sub_DVBChannel subnetwork, its parameters were set as follows:

Symbol	Specification	Simulation Type	Value
sub_DVBChannel	NoiseGain	ADS Ptolemy	$5.45/exp(CN/10.0 \times ln(10))$
DVBChannel	ChannelModel	ADS Ptolemy	Fixed Reception F1


This simulation result was not included in this DTV package because of the limitation of DTV package size. If users want to prove the BER performance of this channel, users can set the parameters above and run this design example. The simulation time is very long.

<u>Constellation of OFDM Demodulation Signal at Different CN</u> shows the received constellation after OFDM demodulation when the CN is 15dB and 25dB, respectively in the Ricean channel simulation. The results show the result of higher CN is better than that of lower CN.


Ricean Channel BER shows the BER of different CN when the simulation channel is

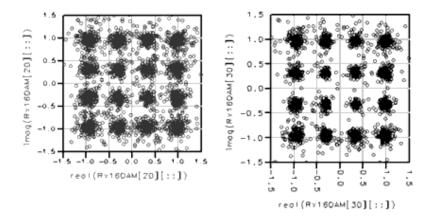
Ricean channel.

Constellation of OFDM Demodulation Signal at Different CN

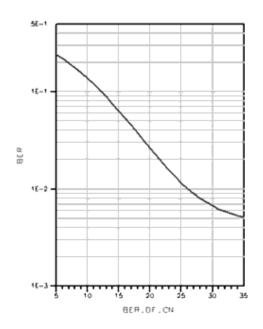
Ricean Channel BER

Rayleigh channel

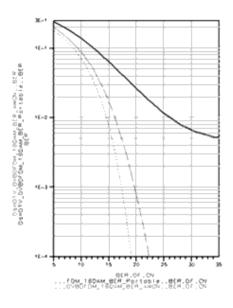
Measurements of BER vs. CN were made using a Rayleigh channel simulator. The channel parameter is from DVB-T. In our DTV simulation system, this Ricean channel is simulated by sub_DVBChannel subnetwork, its parameters were set as follows:


Symbol	Specification	Simulation Type	Value
sub_DVBChannel	NoiseGain	ADS Ptolemy	$0.45/exp(CN/10.0 \times ln(10))$
DVBChannel	ChannelModel	ADS Ptolemy	Portable Reception P1

This simulation result was not included in this DTV package because of the limitation of DTV package size. If users want to prove the BER performance of this channel, users can set the parameters above and run this design example. The simulation time is very long.


<u>Constellation of OFDM Demodulation Signal at Different CN</u> shows the received constellation after OFDM demodulation when the CN is 15dB and 25dB. The results

Advanced Design System 2011.01 - DTV Design Library show the higher CN is better than the lower. <u>Rayleigh Channel BER</u> shows the BER of different CN. <u>Gaussian, Ricean, and Rayleigh Simulation Channel BERs</u> shows BERs of the three channels; the AWGN channel is the best.


Constellation of OFDM Demodulation Signal at Different CN

Rayleigh Channel BER

Gaussian, Ricean, and Rayleigh Simulation Channel BERs

Benchmark

- Hardware Platform: Pentium II 200 MHz, 128 MB memory
- Software Platform: Windows NT 4.0 Workstation, ADS 1.3
- Data Points: 200 OFDM symbols
- Simulation Time: Approximately one hour and 38 minutes for each channel model

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

16-QAM DVB-T System Design

DTV_DVBSystem_wrk Design Name

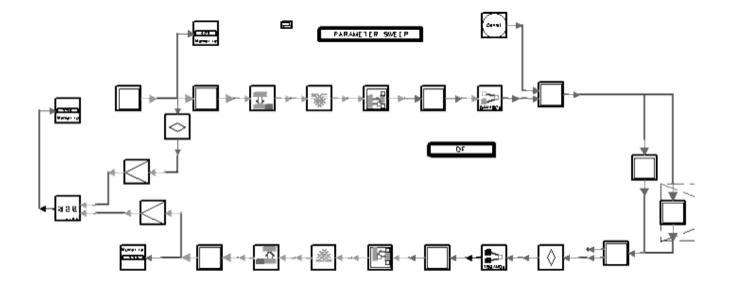
DsnDTV_DVBSystem_16QAM

Features

- 16-QAM modulation and demodulation
- 2K mode OFDM adaptation
- Channel coding and decoding, including Reed-Solomon, 1/2 punctured convolutional coding

- Inner and outer interleaving
- BER performance test for Gaussian, Ricean, and Rayleigh channels

Description

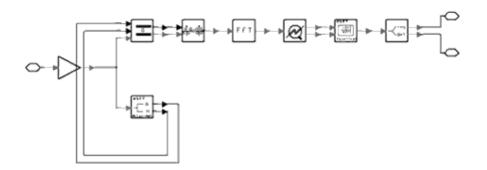

This DVB-T system design includes inner and outer interleaving, Reed-Solomon and convolutional coding, and full OFDM adaptation. Modulation modes and code rates are uniform 16-QAM and 1/2, respectively. In the OFDM adaptation, the full system design works in 2K mode. The IFFT/ FFT is 2048; the Guard interval is 1/16 the IFFT size. Simulation channels are Gaussian, Ricean, and Rayleigh.

The byte in transmitter and receiver, the BER of the three simulation channels are shown in the simulation results. The BER of the channels in this design are compared to the DVB system without channel coding and interleaving in the *DsnDTV_DVBOFDM_16QAM_BER*.

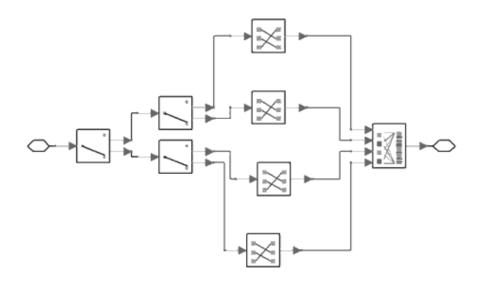
Schematics

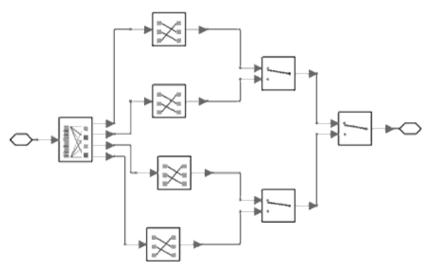
The figure below shows the schematic for this design.

DTV_DVBSystem_16QAM



Four subnetworks are used in this design; they are shown below.


sub_DVBOFDM_Mod


sub_DVBOFDM_Demod

sub_DVBInnerInterlv

sub_DVBInnerDeinterlv

Specifications

Specification (Parameter)	Simulation Type	Value
Carriers	ADS Ptolemy	1705
Data	ADS Ptolemy	1512
IFFTSize	ADS Ptolemy	2048
FFTSize	ADS Ptolemy	2048
Guard	ADS Ptolemy	128
IFFTOrder	ADS Ptolemy	11
FFTOrder	ADS Ptolemy	11
MaxDelay	ADS Ptolemy	2047
Ru	ADS Ptolemy	0.9

Notes

- 1. The propagation channel model used in this example is a standard terrestrial television propagation channel as defined in the DVB-T specification.
- The DelayByte parameter of the punctured convolutional decoder (DTV_PuncConvDecoder (dtv) model) is used to adjust delays caused by OFDM demodulation (which is one OFDM symbol) and one additional OFDM symbol delay (which corresponds to the DTV_DVBSymDeinterlv4b (dtv) model) because this model uses an even number of OFDM symbols.

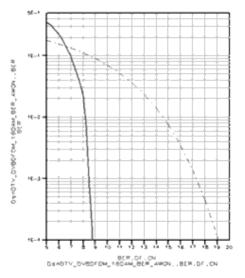
Simulation Results

AWGN Channel

Additive white Gaussian noise was added to set the carrier-to-noise (CN) ratio at the receiver input.

<u>Compare RxTSP with TxTSP with Different CN</u> shows the transmitted and received TSP data when the CN ratio is 5dB and 8dB in Gaussian channel simulation. In

<u>Compare RxTSP with TxTSP with Different CN</u>, the first column is the received TSP of CN=5dB; the second column is the received TSP of CN=8dB; the last line is the transmitted TSP. Compared to TxTSP, the first line has more errors than the second line.


Compare RxTSP with TxTSP with Different CN

ledex.]::]]::]	ledex.]:::]
2821	222.600	100,000	1	100,000
2822	204,600	204,000	2	204,000
2823	145,688	145,000	3	145,000
2824	23,600	23,000	ă	23,000
2828	128.600	135,000		135,000
2828	129,600	124,000	5 5 7	124,000
2822	111,688	223,000	ž	223.000
7878	251,600	251,000	, u	251,000
2828 2829	35.688	15.000	ع 9	15.000
2830	35.000	40.000	10	40.000
2831	Z8.000	5.000	11	0.000
2802	Z11.000	Z11.000	12	Z11.000
2800	Z5.000	41.000	13	41.000
2824	Z51.000	251.000	1.4	251.000
2800	6.000	6.000	15	4.000
2828	15.000	155,000	18	153,000
2837	139.000	ZZ4.000	17	ZZ4.000
2835	213,000	204.000	18	204.000
2829	81.000	245,000	19	243,000
꼬문수민	11,000	11,000	20	11,000
2841	137,000	37,000	21	37,000
꼬년 4 꼬	221,600	221,000	22	221,000
꼬문 시간	188,000	231,000	23	231,000
2844	114,000	114,000	24	114,000
200	107.000	157,000	25	187,000
2845	128.000	125,000	26	128.000
2247	71,000	71,000	27	71,000
고등성종	164,000	134,000	28	154,000
2549	89.000	142,000	29	142,000
Z850	189,000	Z41.000	20	Z41,000
2851	18,000	115,000	3!	115,000
285Z	91,000	91.CCC	32	91,000
2852	158,000	157.000	33	187.000
2854	181,000	47.000	34	47,000
2855	Z3.000	223,000	35	223.000
2858	18,000 91,000 158,000 181,000 23,000 155,000 155,000	9,000	38	9,000
2807	166.000	159,000	37	159.000
2858			38	154,000
2259	87.000	87.000	29	_57.000
7500	150.000	211.000	40	211.000

The BERs of the full system and OFDM system (without channel coding in DsnDTV_DVBOFDM_16QAM_BER) are shown in <u>Gaussian Channel BER (solid line = full system; dash line = DsnDTV_DVBOFDM_16QAM_BER)</u>. Channel coding gain is approximately 8.5dB at 0.001 BER.

According to DVB-T, in 16-QAM modulation, code rate is 1/2, and Gaussian channel model condition, the required CN for BER=0.0002 after Viterbi QEF and Reed-Solomon coding is 8.8dB. In <u>Gaussian Channel BER (solid line = full system; dash line = DsnDTV_DVBOFDM_16QAM_BER)</u>, CN is approximately 8.8dB for BER=0.0002. The simulation results shows this design is correct in the Gaussian channel.

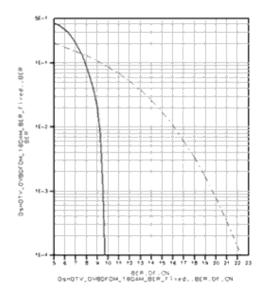
Gaussian Channel BER

(solid line = full system; dash line = DsnDTV_DVBOFDM_16QAM_BER)

Ricean channel

Measurements of BER vs. CN were made using a Ricean channel simulator. The channel parameter is from DVB-T. In our DTV simulation system, this Ricean channel is simulated by sub_DVBChannel subnetwork, its parameters were set as follows:

Symbol	Specification	Simulation Type	Value
sub_DVBChannel	NoiseGain	ADS Ptolemy	$5.45/exp(CN/10.0 \times ln(10))$
DVBChannel	ChannelModel	ADS Ptolemy	Fixed Reception F1


<u>Compare RxTSP with TxTSP with Different CN</u> show the transmitted and received TSP data when CN ratio is 5dB and 8dB in the Ricean channel simulation. The first column is the received TSP of CN=5dB, the second column is the received TSP of CN=8dB; the last column is the transmitted TSP. Compared to TxTSP, the first line has more errors than the second line.

Compare RxTSP with TxTSP with Different CN

Index	····][::]][::]	Index][::]
2821	222.000	22.000	1	100.000
2822	204,000	204.000	2	204.000
2823	64,000	145.000	3	145.000
2824	17,000	23.000	4	23.000
2825	145,000	135.000	5	135.000
2826	160,000	124.000	6	124.000
2827	236,000	236.000	7	223.000
2828	251,000	251.000	8	251.000
2829	16,000	16,000	9	16.000
2830	116,000	40,000	10	40.000
2831	44.000	210,000	11	6,000
2832	215.000	211,000	12	211.000
2833	26.000	41,000	13	41.000
2834	251.000	251,000	14	251.000
2835	4.000	4.000	15	4,000
2836	5.000	153,000	16	153.000
2837	139.000	230,000	17	224.000
2838	213.000	213,000	18	204.000
2839	211.000	243,000	19	243.000
2840	224.000	11,000	20	11.000
2841	254.000	137.000	21	37.000
2842	221.000	221.000	22	221.000
2843	54.000	231.000	23	231.000
2844	215.000	114.000	24	114.000
2845	168,000	167.000	25	167.000
2846	126,000	126.000	26	126.000
2847	71,000	71.000	27	71,000
2848	164,000	164.000	28	164,000
2849	53,000	142.000	29	142,000
2850	133,000	241.000	30	241.000
2851	150,000	18.000	31	115,000
2852	120.000	91.000	32	91,000
2853	158,000	158.000	33	167,000
2854	45,000	179.000	34	47,000
2855	253.000	223.000	35	223.000
2856	65.000	9.000	36	9.000
2857	123.000	159.000	37	159.000
2858	75.000	154.000	38	154.000
2859	215.000	87.000	39	87.000
2860	23.000	211,000	40	211,000

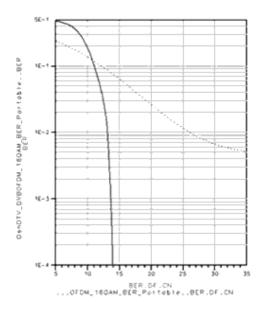
The BERs of the full system and OFDM system (without channel coding in DsnDTV_DVBOFDM_16QAM_BER) are shown in <u>Ricean Channel BER (solid line = full system; dash line = DsnDTV_DVBOFDM_16QAM_BER</u>). Channel coding gain is approximately 10dB at 0.001 BER. According to DVB-T, in 16-QAM modulation, code rate is 1/2, and Gaussian channel model condition, the required CN for BER=0.0002 after Viterbi QEF after Reed-Solomon coding is 9.6dB. In <u>Ricean Channel BER (solid line = full system; dash line = DsnDTV_DVBOFDM_16QAM_BER</u>), CN is approximately 9.6dB for BER=0.0002. The simulation results shows this design is correct in the Ricean channel.

Ricean Channel BER

(solid line = full system; dash line = DsnDTV_DVBOFDM_16QAM_BER) Rayleigh channel Measurements of BER vs. CN were made using a Rayleigh channel simulator. The channel parameter is from DVB-T. In our DTV simulation system, this Ricean channel is simulated by sub_DVBChannel subnetwork, its parameters were set as follows:

Symbol	Specification	Simulation Type	Value
sub_DVBChannel	NoiseGain	ADS Ptolemy	0.45/exp(CN/10.0 × ln(10))
DVBChannel	ChannelModel	ADS Ptolemy	Portable Reception P1

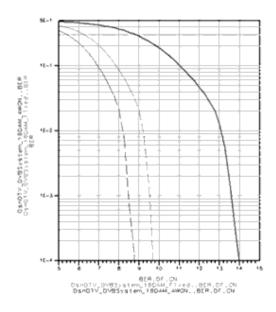
This simulation result was not included in this DTV package because of the limitation of DTV package size. To prove the BER performance of this channel, set the parameters and run this design example; simulation time is very long.


<u>Compare RxTSP with TxTSP with different CN</u> shows the transmitted and received TSP data when CN is 5dB and 8dB in Rayleigh channel simulation. The first column is the received TSP of CN=5dB, the second column is the received TSP of CN=8dB; the last column is the transmitted TSP. Compared to the TxTSP, the first column shows many errors, while the second column has fewer errors.

Compare RxTSP with TxTSP with different CN

lndex		Loolii .	16dex	
2821	100.000	100.000	1	100.000
2822	255.000	204.000	2	204.000
2823	211,000	214.000	3	145.000
2824	223.000	138.000	4	23.000
2825	40,000	188.000	5	135.000
2826	8.000	000.8	6	124.000
2827	223.000	141,000	7	223.000
2828	254.000	47,000	8	251.000
2829	87.000	18.000	9	16.000
2830	192.000	138.000	10	40.000
2831	26.000	28,000	11	8.000
2832	2.000	211.000	12	211.000
2833	41,000	41,000	13	41.000
2834	196,000	251.000	14	251,000
2835	108.000	12.000	15	4.000
2838	125.000	125.000	16	153.000
2837	248.000	252.000	17	224.000
2838	8.000	000.5	18	204.000
2839	36,000	78,000	19	243.000
2840	77,000	11,000	20	11,000
2841	185.000	82.000	21	37.000
2842	17,000	65.009	22	221,000
2843	168.000	251.000	23	231.000
2844	28,000	158,000	24	114.000
2845	208.000	111,000	25	167.000
2848	247,000	128.000	26	126.000
2847	188.000	194.000	27	71.000
2848	164,000	164.000	28	164.000
2849	42.000	158.000	29	142.000
2850	9,000	219.000	30	241.000
2851	19,000	115.000	31	115,000
2852	178.000	68.000	32	91.000
2853	39,000	187,000	33	167.000
2854	5.000	47.000	34	47.000
2855	158,000	99.000	35	223.000
2856	48,000	48.000	36	9.000
2837	123.000	159.000	37	159.000

The BERs of the full system and OFDM system (without channel coding in DsnDTV_DVBOFDM_16QAM_BER) are shown in <u>Rayleigh Channel BER (solid line = full system; dotted line = DsnDTV_DVBOFDM_16QAM_BER)</u>. Channel coding gain is approximately 12.0dB at 0.001 BER. According to the DVB-T, in 16-QAM modulation, code rate is 1/2, and Rayleigh channel model condition, the required CN for BER=0.0002 after Viterbi QEF after Reed-Solomon coding is 11.2dB. In <u>Rayleigh Channel BER (solid line = full system; dotted line = DsnDTV_DVBOFDM_16QAM_BER)</u>. CN is approximately 13.8dB for BER=0.0002.


Rayleigh Channel BER (solid line = full system; dotted line = DsnDTV_DVBOFDM_16QAM_BER)

The simulated system performance in DVB-T Appendix A is obtained at *Perfect channel estimation and without phase noise condition*; the performance in DVB-T Table A.1 is the best performance. In our simulation, channel estimation is not perfect because of noise (the channel estimation may have some distortion). Moreover, the frequency equalizer may enhance noise power because of fading. Therefore, the 2.6dB difference between our simulation and DVB-T is suitable because there is no fading in Gaussian and Ricean channels. <u>Gaussian, Ricean, Rayleigh Simulation Channel BERs</u> is shown the BERs of all the three simulation channels. From Gaussian, Ricean, Rayleigh Simulation Channel BERs

, the performance of the Gaussian channel is the best, then the Ricean channel, the performance of the Rayleigh channel is the worst.

Gaussian, Ricean, Rayleigh Simulation Channel BERs

Benchmark

- Hardware Platform: Pentium II 200 MHz, 128 MB memory
- Software Platform: Windows NT 4.0 Workstation, ADS 1.3
- Data Points: 188 × 3 Bytes
- Simulation Time: Approximately 16 hours for Rayleigh channel model, 10 hours for Ricean channel model, 9 hours for Gaussian channel model

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

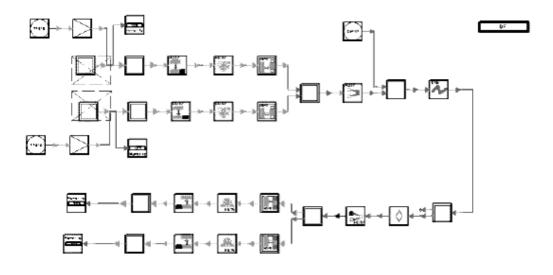
Hierarchical 64-QAM DVB-T System Design

DTV_DVBSystem_wrk Design Name

DsnDTV_DVBSystem_Hier64QAM

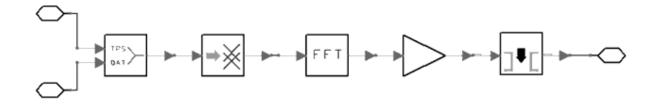
Features

- Channel coding and decoding, including Reed-Solomon coding, punctured convolutional coding
- 2K mode OFDM adaptation
- Inner and outer interleaving
- Hierarchical 64-QAM modulation and demodulation

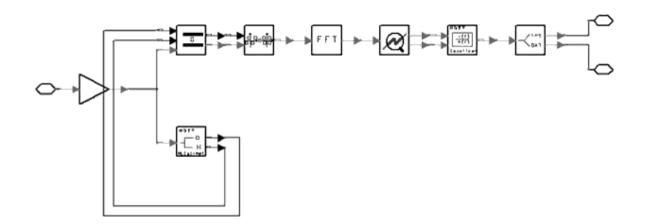

Description

This is a hierarchical DVB-T system design example. It includes inner and outer interleaving, Reed-Solomon and convolutional coding and full OFDM adaptation system. The modulation mode is hierarchical 64-QAM. Code rates for HP level(r1) and LP level(r2) are 1/2 and 5/6, respectively. In the OFDM adaptation, the full system design works in 8K mode. The IFFT/ FFT size is 8192 and the Guard interval is 1/16 of IFFT size. The simulation channel is the DVB channel. The byte in transmitter and receiver are shown in the simulation results.

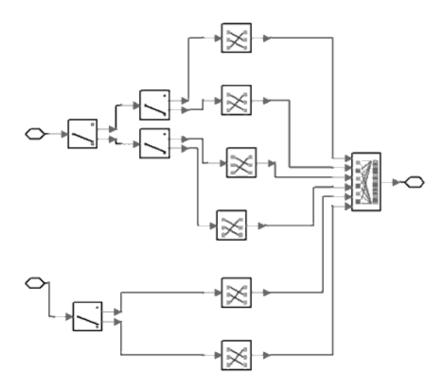
Schematics

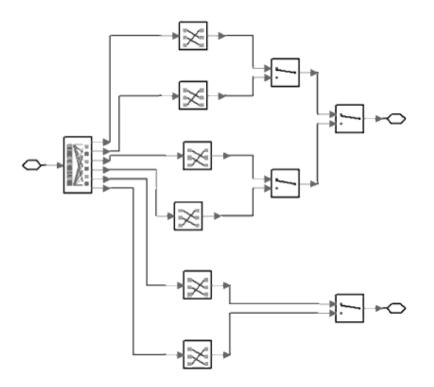

Advanced Design System 2011.01 - DTV Design Library The figure below shows the schematic for this design.

DsnDTV_DVBSystem_Hier64QAM



Four subnetworks are used in this design; they are shown below.


sub_DVBOFDM_Mod


sub_DVBOFDM_Demod

sub_DVBHier_InnerInterlv

sub_DVBHier_InnerDeinterlv

Specifications

Specification (Parameter)	Simulation Type	Value
Carriers	ADS Ptolemy	6817
Data	ADS Ptolemy	6048
IFFTSize	ADS Ptolemy	8192
FFTSize	ADS Ptolemy	8192
Guard	ADS Ptolemy	512
IFFTOrder	ADS Ptolemy	13
FFTOrder	ADS Ptolemy	13
MaxDelay	ADS Ptolemy	8192
Ru	ADS Ptolemy	0.9

Notes

- 1. The propagation channel model used in this example is a standard terrestrial television propagation channel which is defined in the DVB-T specification.
- The DelayByte parameter of the punctured convolutional decoder (DTV_PuncConvDecoder (dtv) model) is used to adjust delays caused by OFDM demodulation (which is one OFDM symbol) and one additional OFDM symbol delay (which corresponds to the DTV_DVBSymDeinterlv6b model) because this model uses an even number of OFDM symbols.

Simulation Results

<u>Compare HP RxTSP with HP TxTSP</u> shows the transmitted HP (high priority) TSP data and the received HP TSP data. <u>Compare LP RxTSP with LP TxTSP</u> shows the transmitted LP (low priority) TSP data and the received LP low data.

Compare HP RxTSP with HP TxTSP

Advanced	Design	System	2011.0	01 -	DTV	Design	Library

Index	RxTSP	Index	TxTSP1
6768	100.000	0	100.000
6769	204.000	1 2 3 4 5 6 7 8	204.000
6770	145.000	2	145.000
6771	23.000	3	23.000
6772	135.000	4	135.000
6773	124.000	5	124.000 223.000
6774	223.000	5	223.000
6775	251.000		251.000
6776	16.000	8	16.000
6777	40.000	9	40.000
6778	6.000	10	6.000
6779 6780	211.000	11 12	211.000
6781	41.000 251.000	12	41.000 251.000
6782	4.000	14	4.000
6783	153.000	15	153.000
6784	224,000	16	224.000
6785	204,000	17	204.000
6786	243.000	18	243.000
6787	11,000	19	11.000
6788	37.000	20	37.000
6789	221.000	21	221.000
6790	231.000	22 23	231.000
6791	114.000	23	114.000
6792	167.000	24 25 26 27	167.000
6793	126.000	25	126.000
6794	71.000	26	71.000
6795	164.000	27	164.000
6796	142.000	28	142.000
6797	241,000	28 29 30	241.000
6798	115.000	30	115.000
6799	91.000	31	91.000
6800	167.000	32	167.000
6801 6802	47.000 223.000	33 34	47.000 223.000
6802	223.000	34	9.000
6803	9.000	35 36	159.000
6805	159.000	30	154.000
0000	104.000	3/	154.000

Compare LP RxTSP with LP TxTSP

Index	RxTSP1	Index	TxTSP
Index 3572 3673 3574 3575 3576 3577 3578 3579 3580 3579 3580 3581 3582 3583 3584 3585 3586 3586 3587 3588 3586 3587 3588 3589 3589 3589 3589 3589	RxTSP1 97,000 243,000 24,000 69,000 155,000 199,000 41,000 89,000 207,000 111,000 58,000 45,000 213,000 67,000 117,000 226,000 79,000 127,000 212,000	Index 0 1 3 4 5 6 7 8 9 10 11 12 12 13 14 15 15 16 17 18 19 20 21	TxTSP 97.000 243.000 86.000 69.000 155.000 199.000 41.000 89.000 207.000 111.000 45.000 213.000 67.000 117.000 279.000 127.000 127.000 122.000
3594 3595 3596 3597 3598 3599	59.000 182.000 102.000 230.000 145.000 158.000	22 23 245 27 28 27 28 27 28 29	59.000 182.000 102.000 230.000 145.000 158.000
3600 3601 3602 3603 3604	43.000 78.000 222.000 154.000 145.000	31 32	43.000 78.000 222.000 154.000 145.000
3605 3606 3607 3608 3609 3610	42.000 24.000 123.000 96.000 19.000 138.000	33 34 35 36 37	42,000 24,000 123,000 96,000 19,000 138,000

Benchmark

- Hardware Platform: Pentium II 200 MHz, 128 MB memory
- Software Platform: Windows NT 4.0 Workstation, ADS 1.3
- Data Points: 188 × 3 Bytes
- Simulation Time: Approximately 1.5 hours

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

ISDB-T System Design Examples

ISDB-T design examples can be accessed from the ADS Main window *File > Open > Example > DTV*. Schematics and simulation results for the following workspaces are described in this topic.

DTV_ISDB_wrk

- DTV_ISDB_Demo_OneLay
- DTV_ISDB_Demo_TwoLay
- DTV_ISDB_Demo_ThreeLay
- DTV_ISDB_Demo_Partial

DTV_ISDBOFDM_wrk

- DsnDTV_ISDBOFDM_64QAM
- DsnDTV_ISDBOFDM_DQPSK
- DsnDTV_ISDBOFDM_NTSCInterference
- DsnDTV_ISDBOFDM_TwoLay
- DsnDTV_ISDBOFDM_ThrLay

DTV_ISDBSystem_wrk

- DsnDTV_ISDBOFDM_64QAM_BER
- DsnDTV_ISDBOFDM_DQPSK_BER
- DsnDTV_ISDBOneLay_64QAM
- DsnDTV_ISDBOneLay_DQPSK
- DsnDTV_ISDBTwoLay_System
- DsnDTV_ISDBThrLay_System
- DsnDTV_TMCCMod
- DsnDTV_TMCCThrLay

DTV ISDB Workspace Examples

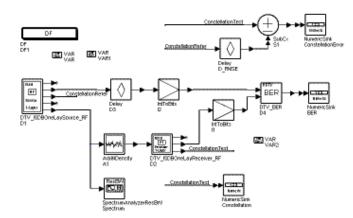
DTV_ISDB_wrk

- DTV_ISDB_Demo_OneLay
- DTV_ISDB_Demo_TwoLay
- DTV_ISDB_Demo_ThreeLay
- DTV_ISDB_Demo_Partial

DTV ISDB Demo for 1-Layer System

DTV_ISDB_Demo_OneLay

Features

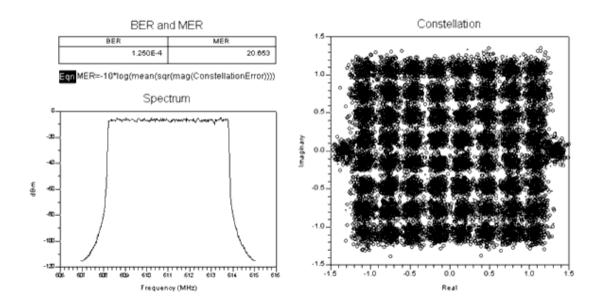

- Mode: 8k (Mode 3)
- MappingMode: 64 QAM
- Inner code rate: 7/8
- Time interleave type: 2 (2 symbols)
- Segments: 13
- Guard interval: 1/8
- Oversampling ratio: 1

Description

This design is a 1-layer example of ISDB-T spectrum, constellation, MER, and BER measurements under an AWGN channel.

The schematic for this design is shown below.

DTV_ISDB_Demo_OneLay Schematic


Users can change parameter settings in VAR and VAR1. VAR2 contains delays needed for MER and BER measurements. For BER measurements after Reed-Solomon decoding, users must take the following action:

- Move the starting point of the line that connects D1 and D3 from the current pin to the uppermost pin in D1.
- Then, replace the delay parameter D_AfterDerandomize with D_AfterRSDecoder in D3 and D4.

Simulation Results

The simulation is under an AWGN channel with a carrier-to-noise ratio of 22.0 dB. Simulation results are stored in DTV_ISDB_Demo_OneLay.dds and shown below.

Simulation Results

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2004A
- Simulation Time: approximately 10 minutes

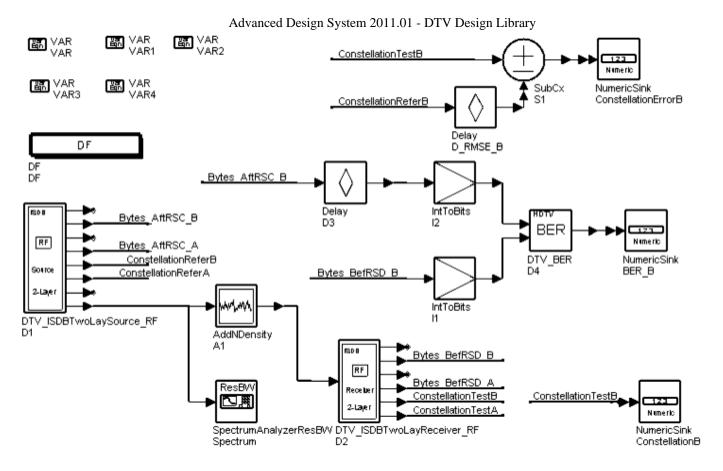
References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV ISDB Demo for 2-Layer System

DTV_ISDB_Demo_TwoLay

Features


- Mode: 8k (Mode 3)
- MappingMode: QPSK (layer A), 64 QAM (layer B)
- Inner code rate: 1/2 (layer A), 3/4 (layer B)
- Time interleave type: 2 (2 symbols, layer A), 2 (2 symbols, layer B)
- Segments: 1 (layer A), 12 (layer B)
- Guard interval: 1/8
- Oversampling ratio: 1

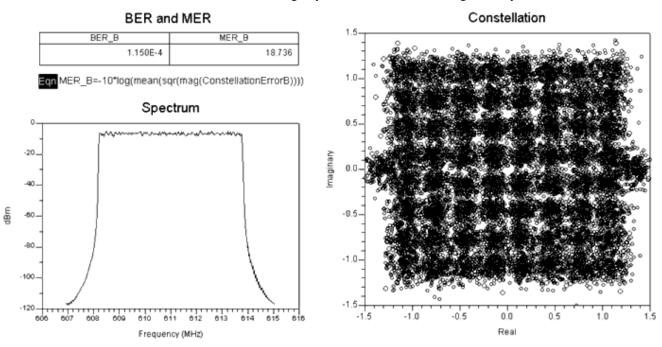
Description

This design is a 2-layer example of ISDB-T spectrum, constellation, MER, and BER measurements under an AWGN channel.

The schematic for this design is shown below.

DTV_ISDB_Demo_TwoLay Schematic

Parameters can be set through VAR, VAR1 and VAR2. VAR3 and VAR4 contain delays needed for MER and BER measurements.


For BER measurements after Reed-Solomon decoding, users must take the following action:

- Move the starting point of the line that connects D1 and D3 from the current pin Bytes_AftRSC to pin Bytes_Uncoded in D1.
- Then, replace the delay parameter D_AfterDerandomize with D_AfterRSDecoder in D3 and D4.

Simulation Results

The simulation is under an AWGN channel with carrier-to-noise ratio of 20.1 dB. Simulation results are stored in DTV_ISDB_Demo_TwoLay.dds and are shown below.

Simulation Results

Advanced Design System 2011.01 - DTV Design Library

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2004A
- Simulation Time: approximately 40 minutes

References

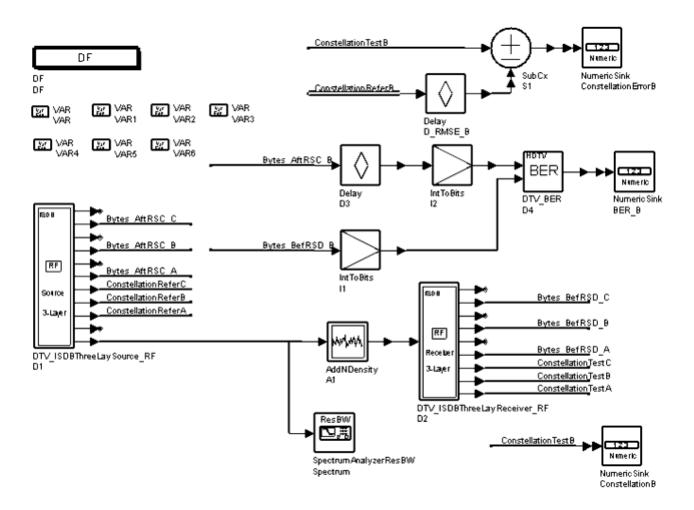
1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV ISDB Demo for 3-Layer System

DTV_ISDB_Demo_ThreeLay

Features

- Mode: 8k (Mode 3)
- MappingMode: QPSK (layer A), 16 QAM (layer B), 64 QAM (layer C)
- Inner code rate: 3/4 (layer A), 2/3 (layer B), 5/6 (layer C)
- Time interleave type: 2 (2 symbols, layer A), 2 (2 symbols, layer B), 2 (2 symbols, layer C)
- Segments: 1 (layer A), 4 (layer B), 8 (layer C)
- Guard interval: 1/8


Advanced Design System 2011.01 - DTV Design Library

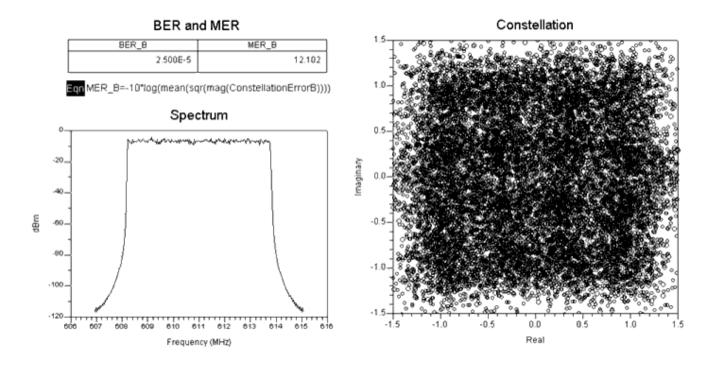
• Oversampling ratio: 1

Description

This design is a 3-layer example of ISDB-T spectrum, constellation, MER, and BER measurements under an AWGN channel.

The schematic for this design is shown below. Parameters can be set through VAR, VAR1, VAR2, and VAR3.

DTV_ISDB_Demo_ThreeLay Schematic


VAR4, VAR5, and VAR6 contain delays needed for MER and BER measurements. For BER measurements after Reed-Solomon decoding, users must take the following action:

- Move the starting point of the line that connects D1 and D3 from the current pin Bytes_AftRSC to pin Bytes_Uncoded in D1.
- Then, replace the delay parameter D_AfterDerandomize with D_AfterRSDecoder in D3 and D4.

Simulation Results

The simulation is under AWGN channel with the C/N (Carrier to Noise Ratio) of 13.5 dB. Simulation results are stored in DTV_ISDB_Demo_ThreeLay.dds and are also shown below.

Simulation Results

Benchmark

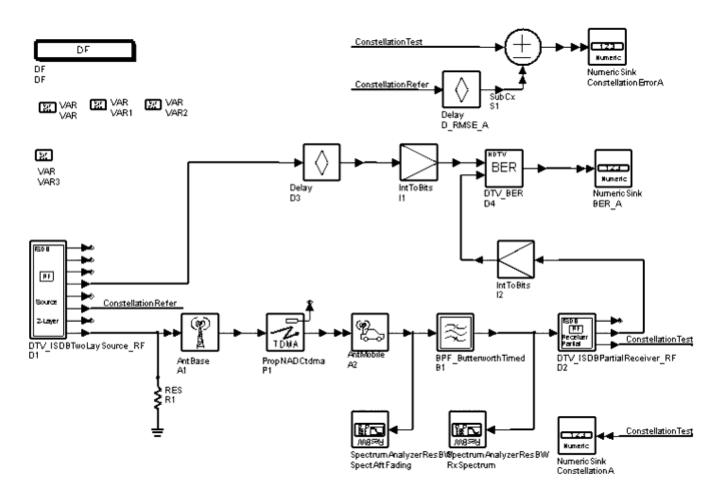
- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2004A
- Simulation Time: approximately 6 minutes

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV ISDB Demo for Partial Reception System

DTV_ISDB_Demo_Partial


Features

- Mode: 8k (Mode 3)
- MappingMode: 16 QAM (layer A), 64 QAM (layer B)
- Inner code rate: 1/2 (layer A), 7/8 (layer B)
- Time interleave type: 2 (2 symbols, layer A), 2 (2 symbols, layer B)
- Segments: 1 (layer A), 12 (layer B)
- Guard interval: 1/8
- Oversampling ratio: 1

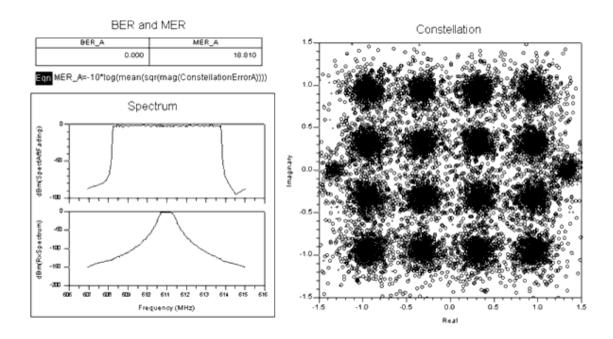
Description

This design is a partial reception example of ISDB-T spectrum, constellation, MER and BER measurements under fading channel.

The schematic for this design is below. Parameters that can be changed by users are contained in VAR, Var1 and VAR2.

DTV_ISDB_Demo_Partial Schematic

Advanced Design System 2011.01 - DTV Design Library


Var3 contains delays needed for MER and BER measurements. For BER measurements after Reed-Solomon decoding, users must take the following action:

- Move the starting point of the line that connects D1 and D3 from the current pin to the upper pin in D1.
- Then, replace the delay parameter D_AfterDerandomize with D_AfterRSDecoder in D3 and D4.

Simulation Results

The simulation is under a fading channel without AWGN. Simulation results are stored in DTV_ISDB_Demo_Partial.dds and are shown below.

Simulation Results

Benchmark

- Hardware Platform: Pentium IV 2.26 GHz, 512 MB memory
- Software Platform: Windows 2000, ADS 2004A
- Simulation Time: approximately 8 minutes

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

Advanced Design System 2011.01 - DTV Design Library

DTV ISDB OFDM Workspace Example

DTV_ISDBOFDM_wrk

- DsnDTV_ISDBOFDM_64QAM
- DsnDTV_ISDBOFDM_DQPSK
- DsnDTV_ISDBOFDM_NTSCInterference
- DsnDTV_ISDBOFDM_TwoLay
- DsnDTV_ISDBOFDM_ThrLay

OFDM 64-QAM Modulation and Demodulation in ISDB-T Systems

DTV_ISDBOFDM_wrk Design Name

DsnDTV_ISDBOFDM_64QAM

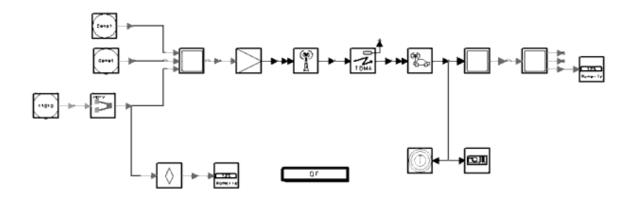
Features

- 64-QAM modulation and demodulation
- Guard interval
- TDMA multipath fading channel with Doppler shift. The type of multipath can be selected; Doppler shift can be determined by the mobile speed setting.
- Displays include: ML (maximum likelihood) RxSpectrum (spectrum of received signal from the channel) RxQAM (received signal constellation after OFDM demodulation)

Description

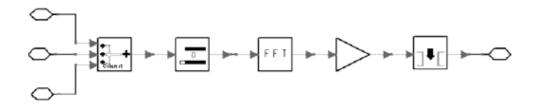
This design is an example of modulation, transmission and demodulation sections via a TDMA multipath channel with Doppler shift. In this example, a single layer transmission is used in mode 3, which includes 13 segments. Modulation mapping is 64-QAM; the guard interval ratio is 1/16.

After 64-QAM data mapping, the 13 OFDM segments are formed by adding TMCC and AC data, and scattered pilots. After the spectral order of the segments is changed, 8192-point inverse FFT (IFFT) is performed. After inserting the guard interval, the complex signal is transmitted; the transmitted signal length is 8192+guard interval.

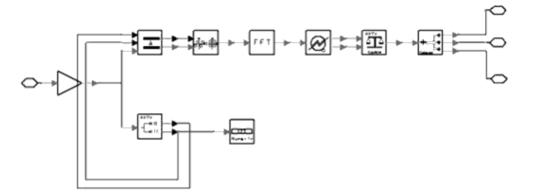

In the receiver, the FFT starting point is determined by the ML function of the received signal. After FFT, the transmitted signal is recovered by a simple frequency equalizer. According to the ISDB-T, the mapping data was received. Data is recovered by the 64-QAM demodulator.

System performance can be viewed during simulation.

Schematics


The figure below shows the schematic for this design.

DsnDTV_ISDBOFDM_64QAM

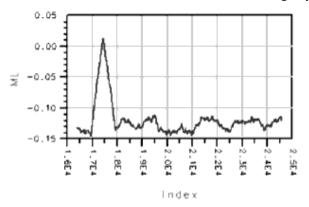


Subnetwork designs are shown in the figures below.

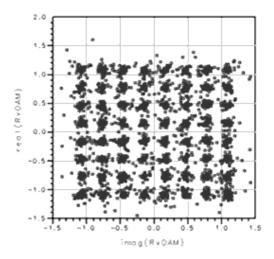
sub_ISDBOFDM_Mod

sub_ISDBOFDM_Demod

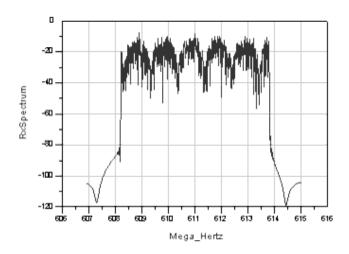
Specifications


Symbol (Model)	Specification (Parameter)	Simulation Type	Value
PropNADCtdma	Туре	ADS Ptolemy	TwoPath
PropNADCtdma	Pathloss	ADS Ptolemy	No
PropNADCtdma	Env	ADS Ptolemy	TypicalUrban
PropNADCtdma	Delay	ADS Ptolemy	1.0 µsec
PropNADCtdma	Test	ADS Ptolemy	Tap1
AntMobile	Vx	ADS Ptolemy	30 km/hr
AntMobile	Vy	ADS Ptolemy	0.0 km/hr

Notes

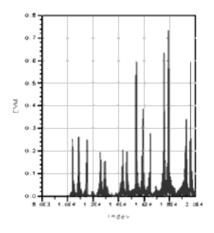

- 1. In this example, the guard interval ratio is 1/16, so the guard interval is 512. (According to ISDB-T, in mode 3 the guard interval is 256, 512, 1024, or 2048, which corresponds to 1/32, 1/16, 1/8, or 1/4 guard interval ratio, respectively.)
- 2. All parameters are related to the guard interval (except TDMA channel parameters). If the guard interval is changed, parameters will be changed to the corresponding values.
- 3. The TDMA channel condition varies according to channel parameter modification. Parameters include Type, Pathloss, Env, Delay, and Test in the PropNADCtdma model, and Vx and Vy in the AntMobile model.

Simulation Results

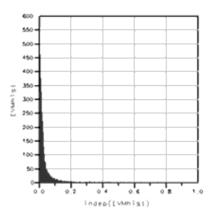

ML magnitude, shows the magnitude of ML function of received signal used to find FFT start. The maximum value appears in every (8192+512) points, the point of the maximum magnitude value is the FFT start.

Received constellation after OFDM demodulation by TDMA channel. Results show OFDM system performance.

Spectrum of signal received from wireless channel. Center frequency is 611MHz



Advanced Design System 2011.01 - DTV Design Library


Adjacent-Channel Power Ratio ACPR=acpr_vr(DsnDTV_ISDBOFDM_64QAM.RxSignal,50.0, {-2.808MHz,2.808MHz}, {-8.808MHz,-3.192MHz}, {3.192MHz}, {3.192MHz})

ACPR				
ACPR(1)	ACPR(2)			
-50.3	:11	-51.380		

Relative magnitude error, which is defined as: EVM=mag(DsnDTV_ISDBOFDM_64QAM. RxQAM-DsnDTV_ISDBOFDM_64QAM. TxQAM)/mean(mag(DsnDTV_ISDBOFDM_64QAM..TxQAM))

EVM histogram, which shows most EVM < 0.1. EVMhist is defined as: EVMhist=histogram(EVM,1001,0.0,1.0)

EVMavr=mean(EVM)

EVMovr	
	0.029

Benchmark

- Hardware Platform: Pentium II 200 MHz, 96 MB memory
- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: 10 symbols
- Simulation Time: 78 seconds

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

OFDM DQPSK Modulation and Demodulation in ISDB-T Systems

DTV_ISDBOFDM_wrk Design Name

DsnDTV_ISDBOFDM_DQPSK

Features

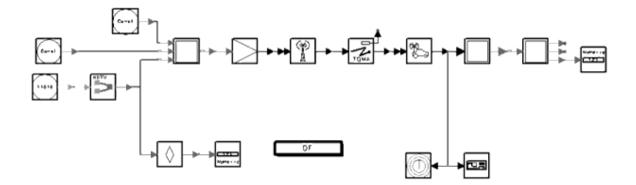
- DQPSK modulation and demodulation
- Guard interval
- TDMA multipath fading channel with Doppler shift. The multipath type can be selected and the Doppler shift can be determined by setting the mobile's speed.
- Displays include: ML (maximum likelihood function) RxSpectrum (spectrum of signal received from the channel) RxDQPSK (received signal constellation after OFDM demodulation)

Description

This design is an example of modulation, transmission and demodulation sections via a

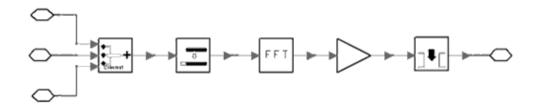
TDMA multipath channel with Doppler shift. In this example, a single layer transmission is used in mode 3, which includes 13 segments. Modulation mapping is DQPSK; the guard interval ratio is 1/16.

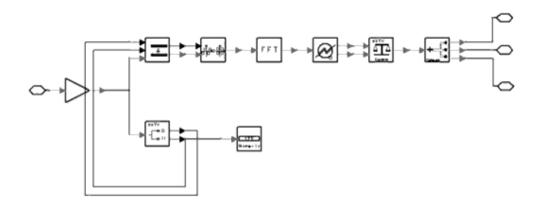
After DQPSK data mapping, the 13 OFDM segments are formed by adding TMCC and AC data, and scattered pilots. After the spectral order of the segments is changed, 8192-point inverse FFT (IFFT) is performed. After inserting the guard interval, the complex signal is transmitted; the transmitted signal length is 8192+guard interval.


In the receiver, the FFT starting point is determined by the ML function of the received signal. After FFT, the transmitted signal is recovered by simple frequency equalizer. According to the ISDB-T, the mapping data was received. TSP data is recovered by the DQPSK demodulator.

System performance can be viewed during simulation.

Schematics

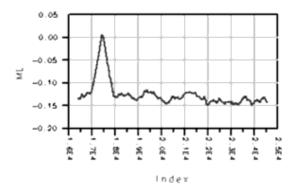

The figure below shows the schematic for this design.


DsnDTV_ISDBOFDM_DQPSK

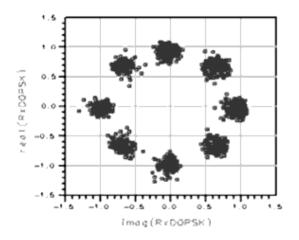
Subnetwork designs are shown in the figures below.

sub_ISDBOFDM_Mod

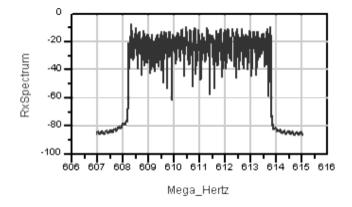
Specifications


Symbol (Model)	Specification (Parameter)	Simulation Type	Value
PropNADCtdma	Туре	ADS Ptolemy	TwoPath
PropNADCtdma	Pathloss	ADS Ptolemy	No
PropNADCtdma	Env	ADS Ptolemy	TypicalUrban
PropNADCtdma	Delay	ADS Ptolemy	6 µsec
PropNADCtdma	Test	ADS Ptolemy	Tap1
AntMobile	Vx	ADS Ptolemy	30 km/hr
AntMobile	Vy	ADS Ptolemy	0.0 km/hr

Notes

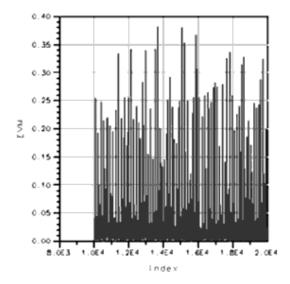

- 1. In this example, the guard interval ratio is 1/16, so the guard interval is 512. (According to ISDB-T, in mode 3 the guard interval is 256, 512, 1024, or 2048, which corresponds to 1/32, 1/16, 1/8, or 1/4 guard interval ratio, respectively.)
- 2. All parameters are related to the guard interval (except TDMA channel parameters). If the guard interval is changed, parameters will be changed to the corresponding values.
- 3. The TDMA channel condition varies according to channel parameter modification. Parameters include Type, Pathloss, Env, Delay, and Test in the PropNADCtdma model, and Vx and Vy in the AntMobile model.

Simulation Results

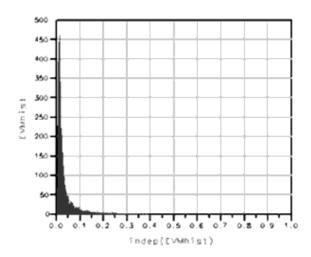

ML magnitude shows the magnitude of ML function of the received signal used to find the FFT start. The maximum value appears in every (8192+512) points, the point of the maximum magnitude value is the FFT start.

Received constellation after OFDM demodulation by TDMA channel. Results show OFDM system performance.

Spectrum of Signal Received from Wireless Channel. Center frequency is 611 MHz



Adjacent-Channel Power Ratio ACPR=acpr_vr(DsnDTV_ISDBOFDM_DQPSK..RxSignal,50.0, {-2.808MHz,2.808MHz},{-8.808MHz,-3.192MHz},{3.192MHz},{3.192MHz})


Advanced Design System 2011.01 - DTV Design Library

	ACPR		
ACPR(1)		ACPR(2)	
	-50.081		-50.360

Relative magnitude error, which is defined as: EVM=mag(DsnDTV_ISDBOFDM_DQPSK...RxDQPSK-DsnDTV_ISDBOFDM_DQPSK...TxDQPSK) mean(mag(DsnDTV_ISDBOFDM_DQPSK...TxDQPSK))

Histogram of EVM, which shows most EVM < 0.1. EVMhist is defined as: EVMhist=histogram(EVM,1001,0.0,1.0)

Benchmark

- Hardware Platform: Pentium II 200 MHz, 96 MB memory
- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: 10 symbols
- Simulation Time: 110 seconds

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV and NTSC Signal Interference Test in ISDB-T Systems

DTV_ISDBOFDM_wrk Design Name

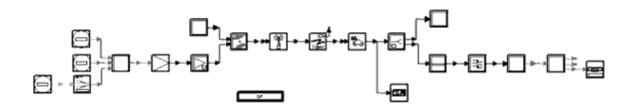
DsnDTV_ISDBOFDM_NTSCInterference

Features

- 64-QAM modulation and demodulation
- Adjacent channel interference between NTSC and ISDB-T signal
- Displays include:

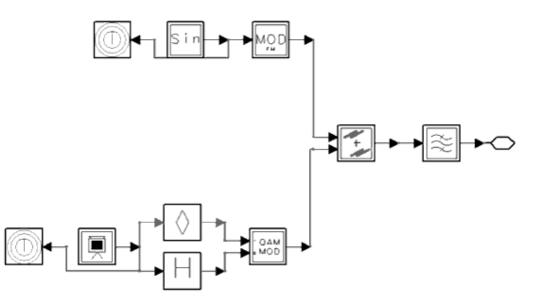
ML (maximum likelihood function), RxSpectrum (spectrum of signal received from the channel), RxQAM (received signal constellation after OFDM demodulation), Videoin, Videoout

• Comparison of analog NTSC TV signal and received NTSC TV signal that has adjacent channel ISDB-T signal interference

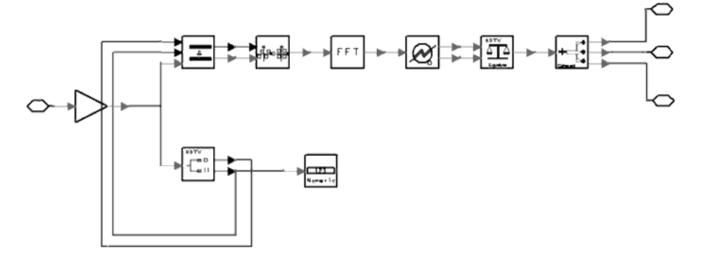

Description

This design is an OFDM example that tests the adjacent interference between the analog NTSC TV signal and the digital ISDB-T signal. ISDB-T signal experiences weak interference while the analog NTSC signal experiences strong interference. This effect is saved in Data Display (DsnDTV_ISDBOFDM_NTSCInterference1.dds). The analog NTSC spectrum experiences interference at frequencies over 6 MHz. The ISDB-T signal center frequency is 611.15 MHz, which is shifted 150 kHz.

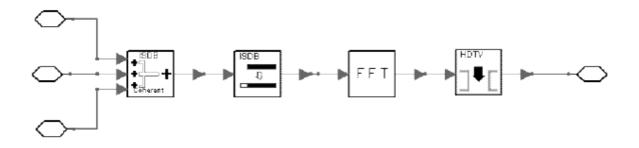
Schematics

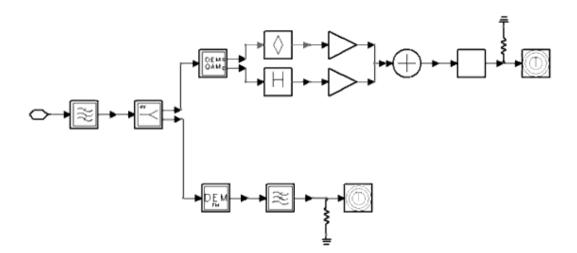

The figure below shows the schematic for this design.

DsnDTV_ISDBOFDM_NTSCInterference



Subnetwork designs are shown in the figures below.


Sub_Mod_Analog

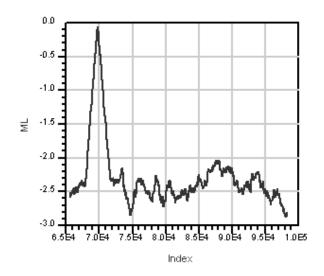

Sub_ISDBOFDM_Demod

Sub_ISDBOFDM_Mod

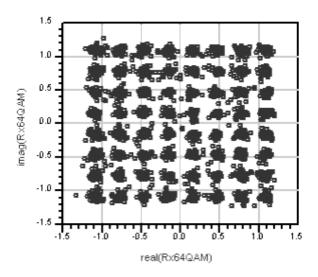
Sub_Demod_Analog

Specifications

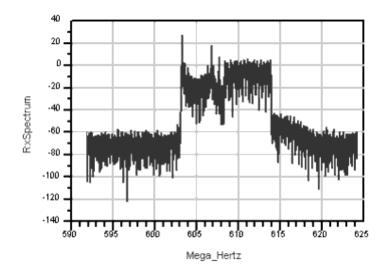
Advanced Design	System 2011.01 - D	TV Design Library

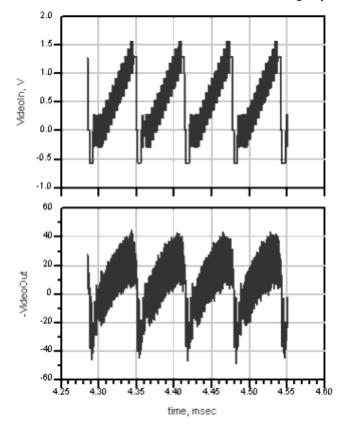

Specification (Parameter)	Simulation Type	Value
Carriers	ADS Ptolemy	432
Segments	ADS Ptolemy	13
IFFTSize	ADS Ptolemy	8192 × 4
FFTSize	ADS Ptolemy	8192 × 4
GuardInterval	ADS Ptolemy	512 × 4
IFFTOrder	ADS Ptolemy	15
FFTOrder	ADS Ptolemy	15
MaxDelay	ADS Ptolemy	8192 × 4

Notes


- 1. In this example, the guard interval ratio is 1/16, so the guard interval is 512. (According to ISDB-T, in mode 3 the guard interval is 256, 512, 1024, or 2048, which corresponds to 1/32, 1/16, 1/8, or 1/4 guard interval ratio, respectively.)
- 2. All parameters are related to the guard interval (except TDMA channel parameters). If the guard interval is changed, parameters will be changed to the corresponding values.
- 3. The TDMA channel condition varies according to channel parameter modification. Parameters include Type, Pathloss, Env, Delay, and Test in the PropNADCtdma model, and Vx and Vy in the AntMobile model.

Simulation Results


ML magnitude shows the magnitude of ML function of received signal used to find FFT start. Maximum value appears in every 4 \times (8192+512) points, the point of the maximum magnitude value is the FFT start.


Received 64QAM Constellation after OFDM demodulation by TDMA channel with NTSC Signal Interference.

Spectrum of Signal Received from Wireless Channel

NTSC Video Input and Output Signals with ISDB-T Signal Interference

Benchmark

- Hardware Platform: Pentium II 200 MHz, 96 MB memory
- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: 10 symbols
- Simulation Time: 8.5 hours

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

OFDM 2-Layer Modulation and Demodulation in ISDB-T Systems

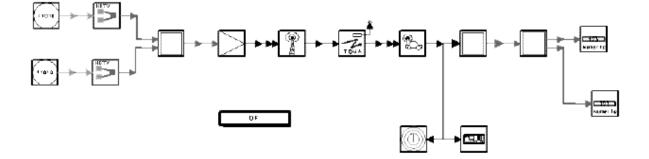
DTV_ISDBOFDM_wrk Design Name

DsnDTV_ISDBOFDM_TwoLay

Features

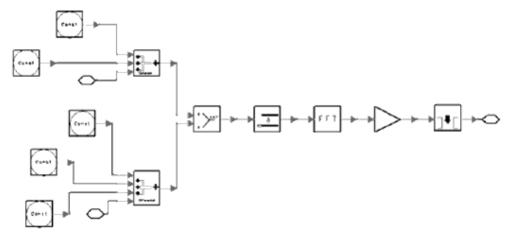
- 64-QAM modulation and demodulation
- DQPSK modulation and demodulation
- Guard interval
- TDMA multipath fading channel with Doppler shift. The kind of the multipath can be selected and the Doppler shift can be determined by setting the mobile's speed.
- Displays include: ML (maximum likelihood function) RxSpectrum (spectrum of signal received from the channel) RxQAM (received signal constellation after OFDM demodulation) RxDQPSK

Description

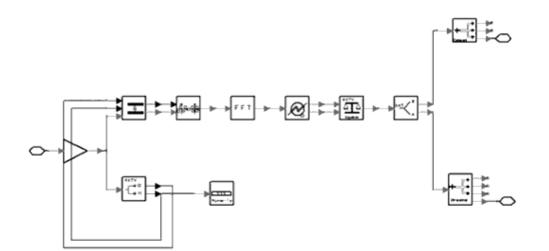

This design is a 2-layer OFDM design example of ISDB-T. It includes 13 segments (5 segments for Layer A, 8 segments for Layer B). Modulation modes are DQPSK and 64-QAM in Layer A and Layer B, respectively.

The IFFT/ FFT size is 2048; the guard interval is 1/8 of IFFT size. The simulation channel is the TDMA channel. The byte in transmitter and receiver, the received DQPSK constellation and 64-QAM constellation are shown in the simulation results.

Schematics


The figure below shows the schematic for this design.

DsnDTV_ISDBOFDM_TwoLay



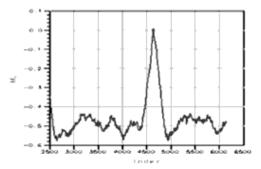
Subnetwork designs are shown below.

sub_ISDBOFDM_TwoLayMod

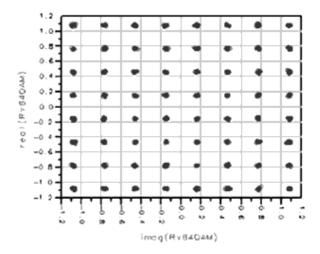
sub_ISDBOFDM_TwoLayDemod

Specifications

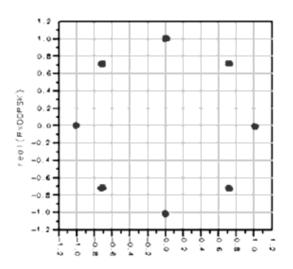
Advanced Design System 2011.01 - DTV Design Library

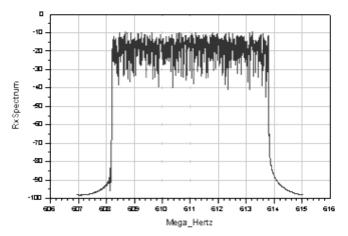

Symbol (Model)	Specification (Parameter)	Simulation Type	Value
	Carriers	ADS Ptolemy	108
	Segments	ADS Ptolemy	13
	IFFTSize	ADS Ptolemy	2048
	FFTSize	ADS Ptolemy	2048
	Guard	ADS Ptolemy	256
	IFFTOrder	ADS Ptolemy	11
	FFTOrder	ADS Ptolemy	11
	MaxDelay	ADS Ptolemy	2047
	SegmentsA	ADS Ptolemy	5
	SegmentsB	ADS Ptolemy	8
	Ru	ADS Ptolemy	0.9
PropNADCtdma	Туре	ADS Ptolemy	FlatFading
PropNADCtdma	Pathloss	ADS Ptolemy	No
PropNADCtdma	Env	ADS Ptolemy	TypicalUrban
PropNADCtdma	Test	ADS Ptolemy	Tap1
AntMobile	Vx	ADS Ptolemy	30 km/hr
AntMobile	Vy	ADS Ptolemy	0.0 km/hr

Notes


- 1. The modification of the guard interval is according to the ISDB-T. In mode 1, the value of the guard interval is 64, 128, 256, and 512 corresponding to the 1/32, 1/16, 1/8, and 1/4 guard interval ratio, respectively. In this example, the guard interval ratio is 1/8, so the guard interval is 256.
- 2. All parameters are related to the guard interval (except TDMA channel parameters). If the guard interval is changed, parameters will be changed to the corresponding values.
- 3. The TDMA channel condition varies according to channel parameter modification. Parameters include Type, Pathloss, Env, Delay, and Test in the PropNADCtdma model, and Vx and Vy in the AntMobile model.

Simulation Results


ML magnitude shows the magnitude of ML function of the received signal used to find the FFT start. The maximum value appears in every (2048+128) points, the point of the maximum magnitude value is the FFT start.


Received 64-QAM constellation after OFDM demodulation by TDMA channel. Results show OFDM system performance.

Received DQPSK constellation after OFDM demodulation by TDMA channel. Results show OFDM system performance.

Spectrum of Signal Received from Wireless Channel. Center frequency is 611 MHz

Adjacent-Channel Power Ratio ACPR=acpr_vr(DsnDTV_ISDBOFDM_TwoLay...RxSignal,50.0, {-2.808MHz,2.808MHz}, {-8.808MHz,-3.192MHz}, {3.192MHz,8.808MHz})

ACPR(2)
-43.005

Benchmark

- Hardware Platform: Pentium II 200 MHz, 96 MB memory
- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: 10 symbols
- Simulation Time: 20 seconds

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

OFDM 3-Layer Modulation and Demodulation in ISDB-T Systems

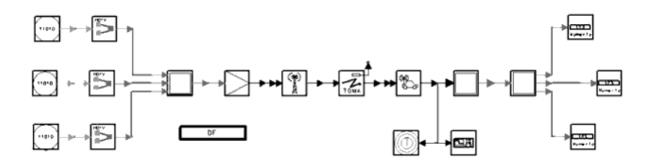
DTV_ISDBOFDM_wrk Design Name

DsnDTV_ISDBOFDM_ThrLay

Features

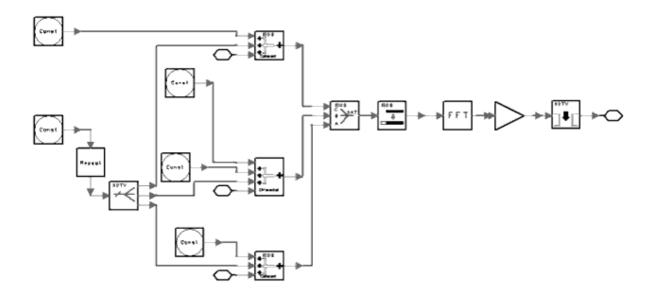
- 64-QAM modulation and demodulation
- DQPSK modulation and demodulation
- 16-QAM modulation and demodulation
- Guard interval
- TDMA multipath fading channel with Doppler shift. The kind of the multipath can be selected and the Doppler shift can be determined by setting the mobile's speed.
- Displays include: ML (maximum likelihood function) RxSpectrum (spectrum of signal received from the channel) RxQAM (received signal constellation after OFDM demodulation) Rx16QAM RxDQPSK

Description

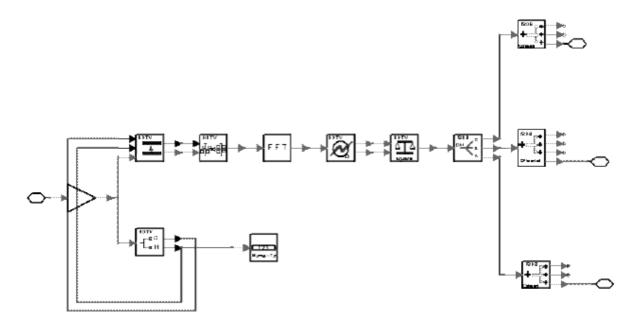

This design is a 3-layer OFDM design example of ISDB-T. It includes 13 segments (1 segment for Layer A, 5 segments for Layer B, and 7 segments for Layer C). The modulation modes are 64-QAM, and DQPSK, and 16-QAM, in Layer A, Layer B, and Layer C, respectively. In the OFDM adaptation, the 3-layer OFDM design works in mode 1. The IFFT/ FFT size is 2048; the Guard interval is 1/16 of IFFT size. The simulation channel is the TDMA channel.

The received 64-QAM, DQPSK, and 16-QAM constellations are shown in the simulation results.

Schematics


The figure below shows the schematic for this design.

DsnDTV_ISDBOFDM_ThrLay



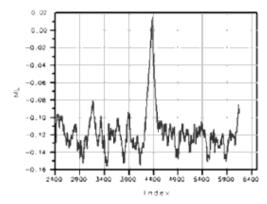
Subnetwork designs are shown in the figures below.

sub_ISDBOFDM_ThrLayMod

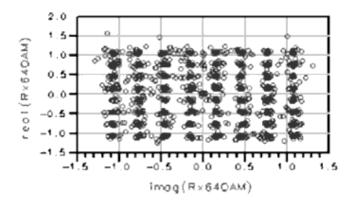
sub_ISDBOFDM_ThrLayDemod

Specifications

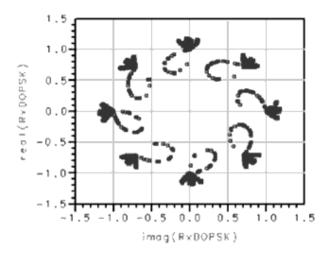
Symbol (Model) Specification (Parameter)		Simulation Type	Value	
	Carriers	ADS Ptolemy	108	
	Segments	ADS Ptolemy	13	
	IFFTSize	ADS Ptolemy	2048	
	FFTSize	ADS Ptolemy	2048	
	Guard	ADS Ptolemy	128	
	IFFTOrder	ADS Ptolemy	11	
	FFTOrder	ADS Ptolemy	11	
	MaxDelay	ADS Ptolemy	2047	
	SegmentsA	ADS Ptolemy	1	
	SegmentsB	ADS Ptolemy	5	
	SegmentsC	ADS Ptolemy	7	
	Ru	ADS Ptolemy	0.9	
PropNADCtdma	Туре	ADS Ptolemy	TwoPath	
PropNADCtdma	Pathloss	ADS Ptolemy	No	
PropNADCtdma	Env	ADS Ptolemy	TypicalUrban	
PropNADCtdma	Delay	ADS Ptolemy	0.5 µsec	
PropNADCtdma	Test	ADS Ptolemy	Tap1	
AntMobile	Vx	ADS Ptolemy	30 km/hr	
AntMobile	Vy	ADS Ptolemy	0.0 km/hr	

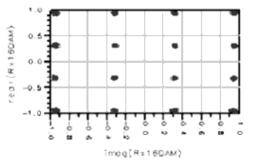

Advanced Design System 2011.01 - DTV Design Library

Notes

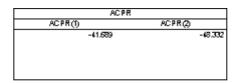

- 1. The modification of the guard interval is according to the ISDB-T. In mode 1, the value of the guard interval is 64, 128, 256, and 512 corresponding to the 1/32, 1/16, 1/8, and 1/4 guard interval ratio, respectively. In this example, the guard interval ratio is 1/16, so the guard interval is 128.
- 2. All parameters are related to the guard interval (except TDMA channel parameters). If the guard interval is changed, parameters will be changed to the corresponding values.
- 3. The TDMA channel condition varies according to channel parameter modification. Parameters include Type, Pathloss, Env, Delay, and Test in the PropNADCtdma model, and Vx and Vy in the AntMobile model.

Simulation Results


ML magnitude which shows magnitude of ML function of received signal used to find FFT start. Maximum value appears in every (2048+128) points, the point of the maximum magnitude value is the FFT start.


Received 64-QAM Constellation after OFDM Demodulation by TDMA channel. Results show OFDM System Performance.

Received DQPSK Constellation after OFDM Demodulationby TDMA Channel. Results show OFDM system performance.


Received 16-QAM Constellation after OFDM Demodulation by TDMA Channel.

Spectrum of Signal Received from Wireless Channel. Center frequency = 611MHz

Adjacent-Channel Power Ratio. ACPR=acpr_vr(DsnDTV_ISDBOFDM_ThrLay..RxSignal, 50.0, {-2.808MHz,2.808MHz}, {-8.808MHz,-3.192MHz}, {3.192MHz,8.808MHz})

Benchmark

- Hardware Platform: Pentium II 200 MHz, 96 MB memory
- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: 10 symbols
- Simulation Time: 500 seconds

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998. Advanced Design System 2011.01 - DTV Design Library

DTV ISDB System Workspace Examples

DTV_ISDBSystem_wrk

- DsnDTV_ISDBOFDM_64QAM_BER
- DsnDTV_ISDBOFDM_DQPSK_BER
- DsnDTV_ISDBOneLay_64QAM
- DsnDTV_ISDBOneLay_DQPSK
- DsnDTV_ISDBTwoLay_System
- DsnDTV_ISDBThrLay_System
- DsnDTV_TMCCMod
- DsnDTV_TMCCThrLay

OFDM 64-QAM ISDB-T System without Channel Coding BER

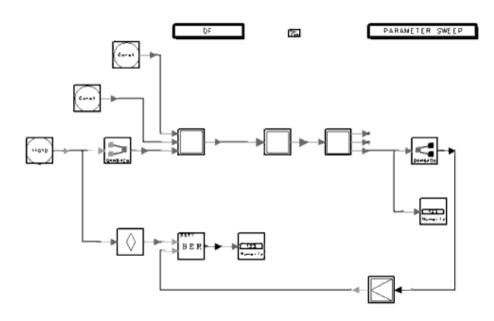
DTV_ISDBSystem_wrk Design Name

DsnDTV_ISDBOFDM_64QAM_BER

Features

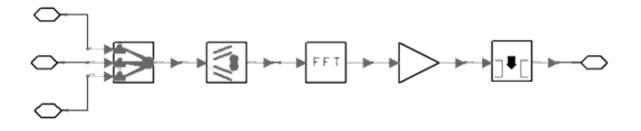
- 64-QAM modulation and demodulation
- Gaussian simulation channels
- Bit error rate is tested
- Without channel coding and interleaving
- Received signal constellation is displayed

Description

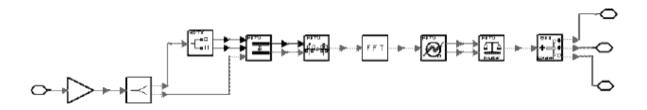

This design example is an OFDM adaptation for ISDB-T to test the BER of an ISDB-T system without channel coding. In mode 1, the guard interval ratio is 1/8; modulation mode is 64-QAM.

Simulation results will be compared to those of *DsnDTV_ISDBOneLay_64QAM*, which tests the BER with channel coding and interleaving.

Schematics


The figure below shows the schematic for this design.

DsnDTV_ISDBOFDM_64QAM_BER

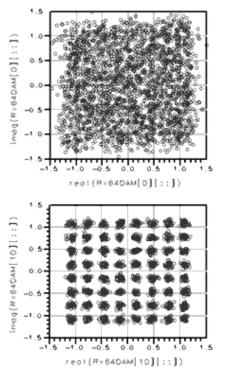


Subnetwork designs are shown in the figures below.

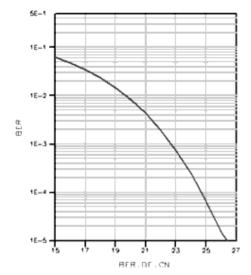
sub_ISDBOFDM_CohDemod

Specifications

Specification (Parameter)	Simulation Type	Value
Carriers	ADS Ptolemy	108
IFFTSize	ADS Ptolemy	2048
FFTSize	ADS Ptolemy	2048
Guard	ADS Ptolemy	256
IFFTOrder	ADS Ptolemy	11
FFTOrder	ADS Ptolemy	11
MaxDelay	ADS Ptolemy	2047


Notes

- 1. The modification of the guard interval is according to the ISDB-T. In mode 1, the value of the guard interval is 64, 128, 256, and 512, corresponding to the 1/32, 1/16, 1/8, and 1/4 guard interval ratio, respectively. In this example, the guard interval ratio is 1/8, so the guard interval is 256.
- 2. This design uses the AWGN channel. The DsnDTV_ISDBOFDM_64QAM_BER_AWGN.ds is the simulation of Gaussian channel (AWGN).


Simulation Results

The figure below shows the received constellation after OFDM demodulation when CN is 15dB and 25dB in Gaussian channel simulation. The results show the higher CN is better than the lower.

Constellation of OFDM Demodulation Signal at Different CN

The figure below shows Gaussian channel BER of different CN.

Gaussian Channel BER

Benchmark

- Hardware Platform: Pentium II 200 MHz, 128 MB memory
- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: 200 OFDM symbols
- Simulation Time: 58 minutes

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

OFDM DQPSK ISDB-T System without Channel Coding BER

DTV_ISDBSystem_wrk Design Name

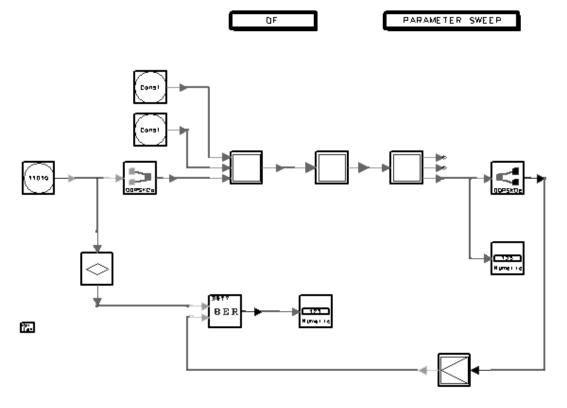
DsnDTV_ISDBOFDM_DQPSK_BER

Features

- DQPSK modulation and demodulation
- Gaussian simulation channels
- Bit error rate is tested
- Without channel coding and interleaving
- Received signal constellation is displayed

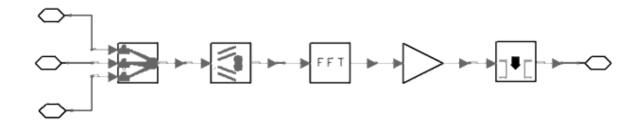
Description

This design example is an OFDM adaptation for ISDB-T to test the BER of an ISDB-T system without channel coding. In mode 1, the guard interval ratio is 1/8; modulation mode is DQPSK.

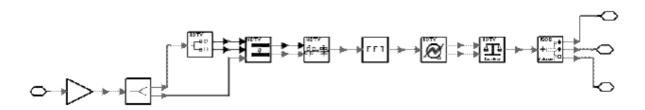

Simulation results are compared to those of *DsnDTV_ISDBOneLay_DQPSK*, which tests the BER with channel coding and interleaving.

Schematics

The figure below shows the schematic for this design.


DsnDTV_ISDBOFDM_DQPSK_BER

Advanced Design System 2011.01 - DTV Design Library



Subnetwork designs are shown in th figures below.

sub_ISDBOFDM_CohMod

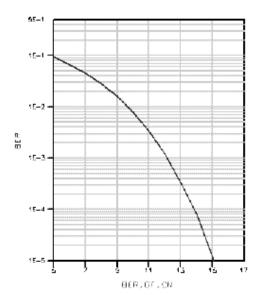
sub_ISDBOFDM_CohDemod

Specifications

Specification (Parameter)	Simulation Type	Value
Carriers	ADS Ptolemy	108
IFFTSize	ADS Ptolemy	2048
FFTSize	ADS Ptolemy	2048
Guard	ADS Ptolemy	256
IFFTOrder	ADS Ptolemy	11
FFTOrder	ADS Ptolemy	11
MaxDelay	ADS Ptolemy	2047


Notes

- 1. The modification of the guard interval is according to the ISDB-T. In mode 1, the value of the guard interval is 64, 128, 256, and 512 corresponding to the 1/32, 1/16, 1/8, and 1/4 guard interval ratio, respectively. In this example, the guard interval ratio is 1/8, so the guard interval is 256.
- This design will work in AWGN channel. The DsnDTV_ISDBOFDM_DQPSK_BER_AWGN.ds is the simulation of Gaussian channel (AWGN).


Simulation Results

The figure below shows the received constellation after OFDM demodulation when the CN is 15dB and 25dB, respectively in the Gaussian channel simulation. The results show the result of higher CN is better than that of lower CN.

Constellation of the OFDM Demodulation Signal at Different CN

The figure below shows the BER of different CN when the simulation channel is Gaussian channel.

Gaussian Channel BER

Benchmark

• Hardware Platform: Pentium II 200 MHz, 128 MB memory

- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: 400 OFDM symbols
- Simulation Time: 2 hours

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

1-Layer 64-QAM Mapping ISDB-T System Design

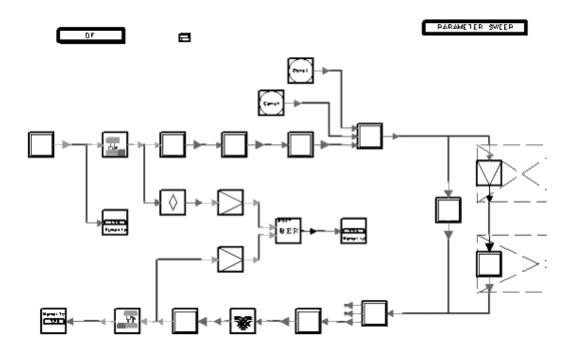
DTV_ISDBSystem_wrk Design Name

DsnDTV_ISDBOneLay_64QAM

Features

- 1-layer full ISDB system with channel coding/decoding and OFDM modulation/demodulation
- OFDM modulation mode 1, 96 carriers per OFDM segment
- 64-QAM mapping
- 3/4 rate punctured convolutional coding and Viterbi decoding
- Reed-Solomon coding and decoding
- Bytewise interleaving, time and frequency interleaving
- Carrier rotation and scrambling
- AWGN and multipath channel simulation

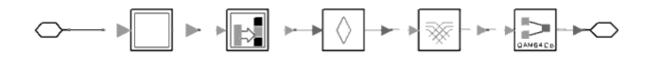
Description

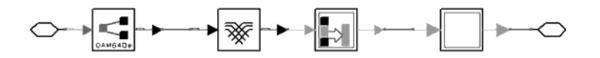

This example demonstrates the functionality of a full 1-layer ISDB system, including channel coding/decoding and OFDM modulation/demodulation models.

This design is simulated under AWGN and multipath channels. The bit error rates of these channels are shown in the simulation results. In the AWGN channel, the BER is compared to that of *DsnDTV_ISDBOFDM_64QAM_BER* without channel coding and interleaving.

Schematics

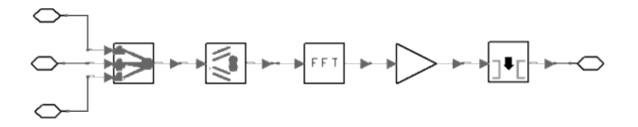
The figure below shows the schematic for this design.


DsnDTV_ISDBOneLay_64QAM

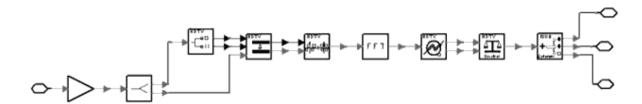

The coding and decoding subnetwork designs are shown in the figures below.

sub_ISDBChCoder_64QAM_3_4

Var Ean



sub_ISDBChDecoder_64QAM_3_4



sub_ISDBOFDM_CohMod

Car Lan

sub_ISDBOFDM_CohDemod

Specifications

Specification	Simulation Type	Value
Number of carriers in each OFDM segment (mode 1)	ADS Ptolemy	96
Number of OFDM segments in this layer	ADS Ptolemy	13
Punctured convolutional code rate	ADS Ptolemy	3/4
Constellation mapping	ADS Ptolemy	64QAM

Notes

- 1. In this design, some system parameters are represented by global variables in order to adapt the system to different modulation modes. These variables are listed in *Global Variables*.
- 2. Delay is introduced in the system in several places as listed in *Delay Adjustments*. The following parameter settings are important because they relate to the delays in *Delay Adjustments*.
 - In the DTV_PuncConvDecoder (dtv) model, OFDM symbol and Viterbi decoding delays are summed and adjusted to a multiple of 204 bytes in order to correctly

align the data packet for Reed-Solomon decoding.

- In the sub_ISDBDerandomize subnetwork, delay parameters must be set correctly for the pseudo-random sequence to be reset at the right timing.
- The sink of the ultimate output of the system must take into account all delays for correct output data that corresponds to system input.

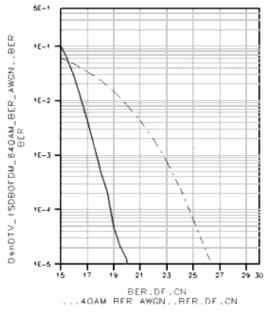
Global Variables

Variables	Description
Carriers	Number of carriers per segment in different OFDM modes:
Segments	Number of OFDM segments belonging to this layer; in this 1-layer application, it is always 13.
NumberTSP	Number of TSPs transmitted on all carriers of each OFDM segment. It is also determined by the data rate of punctured convolutional code type and constellation mapping.
FrameDelays	Number of TSPs delayed in the entire system caused by byte interleaving (1 OFDM frame delay) and time interleaving (several OFDM frame delays, dependent on the I parameter of time interleaving. In this example, $I=4$; therefore, FrameDelays is 2 OFDM frames).
SymDelays	Number of bytes delayed in the entire system caused by bit interleaving (2 OFDM symbols) and OFDM demodulation (1 OFDM symbol).
CN	Carrier/noise ratio of the channel.
Delay Adjustm	ents

Delay Type	Delay Length
Byte interleaving and delay adjustment	1 OFDM frame
Bit interleaving and delay adjustment	2 OFDM symbols
Time interleaving and delay adjustment	Several OFDM frames (depending on the time interleaving mode)
OFDM demodulation	1 OFDM symbol
Viterbi decoding	several bytes determined by PathLen

Simulation Results

AWGN channel


Additive white Gaussian noise was added to set the carrier-to-noise ratio (CN) at the input of the receiver. <u>Compare RxByte with TxByte with different CN</u> show the transmitted and the received byte data when CN is 15dB and 20dB in the Gaussian channel simulation. The second column is the received byte of CN=15dB; the third column is the received Byte of CN=20dB. Compared to TxByte, the second column has more errors than the third column.

The BERs of the full system before RS decoding and OFDM system without channel coding (in DsnDTV_ISDBOFDM_64QAM_BER) are shown in <u>BER for AWGN solid line =</u> <u>full system; dash line = OFDM system without channel coding</u>. Channel coding gain is approximately 6.0dB at 0.0001 BER.

Advanced Design System 2011.01 - DTV Design Library Compare RxByte with TxByte with different CN

Index	[[::]	Index	[::]	[::]
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 33 34	[::] 71.000 192.000 104.000 3.000 160.000 132.000 56.000 160.000 63.000 28.000 28.000 28.000 251.000 200.000 113.000 226.000 226.000 122.000 122.000 122.000 122.000 38.000 122.000 32.000 57.000 151.000 232.000 57.000 88.000 251.000 251.000 103.000 251.000 103.000 251.000 103.000 251.000 103.000 251.000 103.000 251.000 103.000 251.000 103.000 251.000 103.000 251.000 103.000 251.000 103.000 251.000 103.000 251.000 1000 1000 1000 1000 1000 1000 100	Index 397996 397997 397998 397998 397999 398000 398002 398002 398004 398005 398006 398007 398007 398007 398007 398007 398010 398010 398010 398011 398011 398016 398011 398016 398011 398016 398016 398011 398016 398016 398016 398016 398016 398017 398016 398016 398016 398016 398021 398022 39802	[::] 71.000 29.000 48.000 3.000 118.000 8.000 77.000 160.000 63.000 28.000 28.000 28.000 28.000 14.000 69.000 122.000 183.000 122.000 183.000 122.000 183.000 122.000 183.000 226.000 183.000 227.000 183.000 227.000 23.000 227.000 23.000 251.000 251.000 251.000 251.000 251.000 103.000 251.000 103.000 251.000 103.000 103.000 103.000 103.000 103.000 103.000 103.000 1000 103.000 10	[::] 71.000 192.000 104.000 3.000 160.000 132.000 56.000 160.000 28.000 28.000 28.000 28.000 251.000 200.000 122.000 122.000 122.000 122.000 122.000 122.000 122.000 122.000 151.000 232.000 57.000 151.000 232.000 151.000 251.000 151.000 251.000 151.000 251.000 151.000 251.000 151.000 151.000 151.000 151.000 151.000 151.000 151.000 151.000 151.000 151.000 151.000 103.000 103.000 103.000 103.000 103.000 103.000 100 100 100 100 100 100 100

BER for AWGN - solid line = full system; dash line = OFDM system without channel coding

• Multipath channel (3dB)

Advanced Design System 2011.01 - DTV Design Library


Measurements of BER vs. CN were made using a fading channel simulator. The DU ratios of a main signal and a delayed signal were set to 3 dB. Delay time of a delayed signal from a main signal was set to 1.5 μ sec. This multipath channel has no fading frequency. In the ADS simulation system, this multipath channel is simulated by UserDefChannel model; parameters were set as follows:

Symbol	Specification	Simulation Type	Value
UserDefChannel	PathNumber	ADS Ptolemy	2
UserDefChannel	AmpArray	ADS Ptolemy	"0.8165 0.5773"
UserDefChannel	DelayArray	ADS Ptolemy	"0.0 1.5"
AntMobile	Vx	ADS Ptolemy	0

This simulation result was not included into this DTV package because of the limitation of DTV package size. To prove the BER performance of this channel, set the parameters above and run this design example. The simulation time is very long. Compare RxByte with TxByte with different CN shows the transmitted and received Byte data when carrier-to-noise ratio (CN) is 15dB and 25dB in the multipath channel simulation. In Compare RxByte with TxByte with different CN, the second column is the received Byte of the CN=15dB, the third column is the received Byte of 25dB. Compared to TxByte, the second column has more error than the third column. The BER of the full system before RS decoding is shown in Multipath Channel BER. CN is 25.0dB when BER is 0.0001.

Compare RxByte with TxByte with different CN

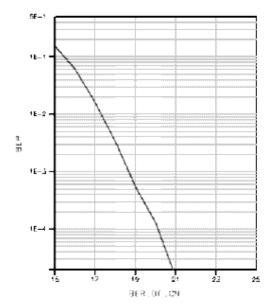
Index][::]	Index][::]][::]
0	71,000	397996	81,000	71,000
1	195.000	397997	195.000	195.000
2 3	162.000	397998	162.000	162.000
4	169,000 46,000	397999 398000	25.000	169.000 46.000
5	27.000	398001	27,000	27,000
6	211.000	398002	4.000	211,000
j ž	233,000	398003	233.000	233,000
8	80.000	398004	80.000	80.000
9	122.000	398005	132.000	122.000
10	193.000	398006	216,000	193.000
11	187.000	398007	187.000	187.000
12	171.000	398008	218,000	171.000
13	245.000 31.000	398009 398010	168.000 97.000	245.000 31.000
15	188.000	398011	112.000	188.000
16	190,000	398012	9,000	190,000
17	154.000	398013	61,000	154.000
18	236.000	398014	157.000	236.000
19	111,000	398015	181.000	111,000
20	36.000	398016	36.000	36.000
21	167,000	398017	99.000	167.000
22 23	55.000 68.000	398018 398019	120.000 54.000	55,000 68,000
23	180,000	398020	52.000	180.000
25	196,000	398021	11,000	196.000
26	19,000	398022	19,000	19,000
27	217,000	398023	217,000	217,000
28	152.000	398024	4.000	152.000
29	66.000	398025	66,000	66.000
30	12.000	398026	32.000	12.000
31	209,000	398027	218.000	209.000
32 33	161.000 14.000	398028 398029	249.000 8.000	161.000
34	13.000	398030	25,000	13.000
35	25.000	398031	25.000	25.000
36	215.000	398032	241,000	215.000
37	52.000	398033	52.000	52.000
38	242.000	398034	242.000	242.000

• Multipath channel (10dB)

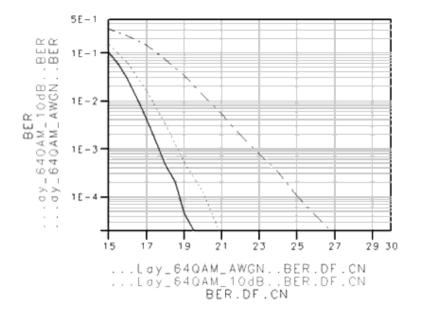
Measurements of BER vs. CN were made using a fading channel simulator. The DU ratios of a main signal and a delayed signal were set to 10 dB. Delay time of a delayed signal from a main signal was set to 1.5 us. This multipath channel has no fading frequency. In the ADS simulation system, this multipath channel is simulated by UserDefChannel model, its parameters were set as follows:

Symbol	Specification	Simulation Type	Value
UserDefChannel	PathNumber	ADS Ptolemy	2
UserDefChannel	AmpArray	ADS Ptolemy	"0.9535 0.3015"
UserDefChannel	DelayArray	ADS Ptolemy	"0.0 1.5"
AntMobile	Vx	ADS Ptolemy	0

This simulation result was not included into this DTV package because of the limitation of DTV package size. If users want to prove the BER performance of this channel, users can set the parameters above and run this design example. The simulation time is very long.


<u>Compare RxByte with TxByte with different CN</u> show the transmitted Byte data and the received Byte data when carrier-to-noise ratio (CN) is 15dB and 20dB in the multipath channel simulation. In <u>Compare RxByte with TxByte with different CN</u>, the second column is the received Byte of the CN=15dB, the third column is the received Byte of 20dB. Compared to TxByte, the second column has more errors than the the third column.

The BER of the full system before RS decoding is shown in <u>Multipath Channel BER</u>. The CN is 20.0dB when BER is 0.0001.


Compare RxByte with TxByte with different CN

Index	[::]	Index	[::]	[::]
Index 0 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 22 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2		1006× 397996 397997 397998 397999 398000 398001 398002 398003 398005 398005 398005 398006 398007 398007 398010 398010 398011 398011 398012 398014 398015 398017 398017 398017 398017 398017 398017 398017 398017 398017 398017 398017 398017 398021 398020 398021 398022 398022 398022 398022 398022 398025 398026 398027 398026 398027 398027 398027 398027 398027 398027 398032 398031 398031 398032 398033 398035	[::] 71,000 164,000 253,000 253,000 104,000 27,000 147,000 233,000 80,000 111,000 191,000 191,000 111,000 191,000 189,000 113,000 189,000 190,000 200,000 49,000 171,000 200,000 49,000 171,000 200,000 180,000 180,000 180,000 180,000 180,000 190,000 217,000 152,000 113,000	[::] 71.000 195.000 162.000 162.000 27.000 211.000 23.000 193.000 122.000 193.000 171.000 245.000 171.000 245.000 171.000 245.000 154.000 154.000 154.000 155.000 167.000 152.000 152.000 161.000 12.000 209.000 161.000 152.000 161.000 152.000 161.000 152.000 161.000 152.000 161.000 152.000 161.000 152.000 161.000 152.000 161.000 161.000 161.000 161.000 161.000 161.000 161.000 161.000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.00000000

Multipath Channel BER

The figure below shows the BERs of the three different simulation results. The performance of AWGN channel is better than the multipath channels (DU ratios are 3dB and 10dB); the performance of the 10dB multipath channel is better than the 3dB multipath channel.

Benchmark

- Hardware Platform: Pentium II 200 MHz, 128 MB memory
- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: 188 × 5-1
- Simulation Time: 16 hours for AWGN channel, 20 hours for DU=3dB and DU=10 dB multipath channel.

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

1-Layer DQPSK-Mapping ISDB-T System Design

DTV_ISDBSystem_wrk Design Name

DsnDTV_ISDBOneLay_DQPSK

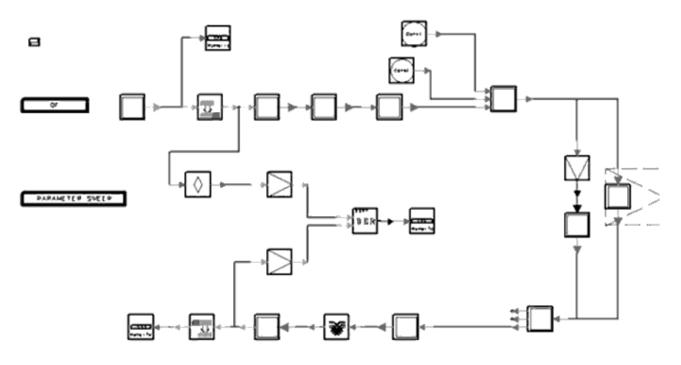
Features

• 1-layer full ISDB system with channel coding/decoding and OFDM

modulation/demodulation

- OFDM modulation mode 1, 96 carriers per OFDM segment
- DQPSK mapping
- 1/2 rate punctured convolutional coding
- Reed-Solomon coding and decoding
- Bytewise interleaving, time and frequency interleaving
- Carrier rotation and scrambling
- AWGN, multipath, and Rayleigh fading channel simulations

Description

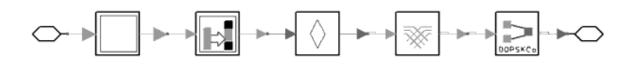

This design demonstrates the performance of a full 1-layer ISDB system, including channel coding/decoding and OFDM modulation/demodulation models. It uses OFDM mode 1 and OFDM modulation, DQPSK mapping, 1/2 rate punctured convolutional coding, interleaving and delay adjustments.

This design is simulated under AWGN, multipath, and Rayleigh fading channels. The bit error rates of these channels are shown in the simulation results. In the AWGN channel, the BER is compared to the *DsnDTV_ISDBOFDM_DQPSK_BER* design without channel coding and interleaving.

Schematics

The figure below shows the schematic for this design.

DsnDTV_ISDBOneLay_DQPSK

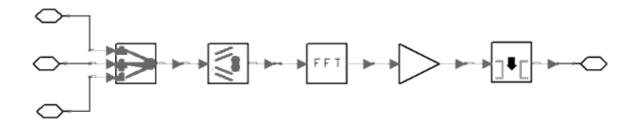


Advanced Design System 2011.01 - DTV Design Library

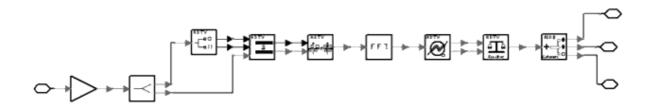
The coding and decoding subnetwork designs are shown in the figures below.

sub_ISDBChCoder_DQPSK_1_2

Var [an



sub_ISDBChDecoder_DQPSK_1_2


Var Ear

sub_ISDBOFDM_CohMod

sub_ISDBOFDM_CohDemod

Specifications

Symbol	Specification	Simulation Type	Value
Number of carriers in each OFDM segment (mode 1)	ADS Ptolemy	96	
Number of OFDM segments in this layer	ADS Ptolemy	13	
Punctured convolutional code rate	ADS Ptolemy	1/2	
Constellation mapping	ADS Ptolemy	DQPSK	
Vx	Vehicle speed	ADS Ptolemy	124 km/l

Notes

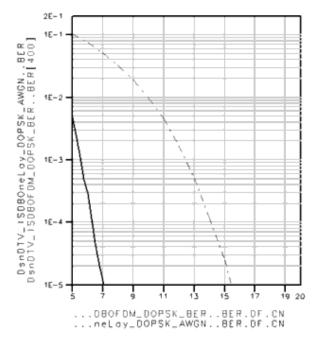
- 1. In this design, some system parameters are represented by global variables in order to adapt the system to different modulation modes. These variables are listed in *Global Variables*.
- 2. Delay is introduced in the system in several places as listed in *Delay*. The following parameter settings are important as they relate to the delays in *Delay*.
 - In the DTV_PuncConvDecoder (dtv) model, OFDM symbol and Viterbi decoding delays are summed and adjusted to a multiple of 204 bytes in order to correctly align the data packet for Reed-Solomon decoding.
 - In the sub_ISDBDerandomize subnetwork, delay parameters must be set correctly for the pseudo-random sequence to be reset at the right timing.
 - The sink of the ultimate output of the system must take into account all delays for correct output data that corresponds to system input.

Description
Number of carriers per segment in different OFDM modes:
Number of OFDM segments belonging to this layer; in this 1-layer application, it is always 13.
Number of TSPs transmitted on all carriers of each OFDM segment. It is also determined by the data rate of punctured convolutional code type and constellation mapping.
Number of TSPs delayed in the entire system caused by byte interleaving (1 OFDM frame delay) and time interleaving (several OFDM frame delays, dependent on the I parameter of time interleaving. In this example, I=4; therefore, FrameDelays is 2 OFDM frames).
Number of bytes delayed in the entire system caused by bit interleaving (2 OFDM symbols) and OFDM demodulation (1 OFDM symbol).
Carrier/noise ratio of the channel.

Global Variables

Delay Type	Delay Length
Byte interleaving and delay adjustment	1 OFDM frame
Bit interleaving and delay adjustment	2 OFDM symbols
Time interleaving and delay adjustment	Several OFDM frames (depending on the time interleaving mode)
OFDM demodulation	1 OFDM symbol
Viterbi decoding	several bytes determined by PathLen

Simulation Results


AWGN Channel

Additive white Gaussian noise was added to set the carrier-to-noise ratio (CN) at the input of the receiver. The figure below shows the transmitted and the received byte data when carrier-to-noise ratio (CN) is 5dB and 7dB in the Gaussian channel simulation.

Compare RxByte with TxByte with different CN

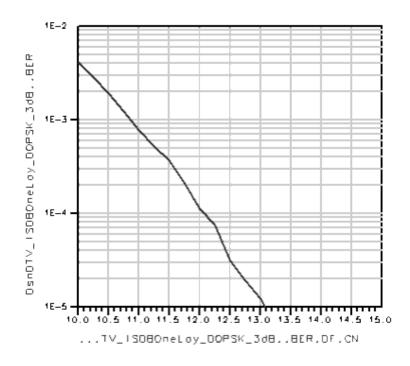
1	ndex	[::]	Index	[::]	
	280	111,000	88828	111.000	111.000
	281	11.000	88829	11.000	11.000
	282 283	58.000	88830 88831	58.000 254.000	58,000
	283	250.000	88832	250.000	250.000
	285	104.000	88833	104.000	104.000
	286	57,000	88834	57,000	57.000
	286 287	122.000	88835	122.000	122.000
	288	192.000	88836	192.000	192.000
	289	172.000	88837	172.000	172.000
	290	136.000	88838	136.000	136.000
	291	159.000	88839 88840	159.000	159.000
	292 293	224.000 98.000	88841	224.000	224.000
	294	94.000	88842	94,000	94,000
	295	0.000	88843	0.000	0.000
	296	67.000	88844	67,000	67,000
	297 298	29.000	88845	29.000	29.000
	298	229.000	88845	229.000	229.000
	299	172.000	88847	172.000	172.000
	300 301	3,000 238,000	88848 88849	3.000 238.000	3,000 238,000
	302	251.000	88850	251.000	251.000
	303	148.000	88851	148.000	148.000
	304	28.000	88852	28.000	28.000
	305	49,000	88853	49.000	49,000
	306	91.000	88854	91,000	91,000
	307	22.000	88855	22.000	22.000
	308	4.000	88855	4.000	4.000
	309 310	235.000	88857 88858	235.000	235.000
1	311	90.000	88859	90.000	90,000
	312	245.000	88860	245.000	245.000
	313	133.000	88861	133.000	133.000
	314	107.000	88862	107.000	107.000
	315	129.000	88863	129.000	129.000
		l			

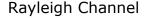
The BERs of the full system before RS decoding and OFDM system without channel coding (in DsnDTV_ISDBOFDM_DQPSK_BER) are shown below. From the figure below, we can know the channel coding gain is about 8.0dB at 0.0001 BER.

Multipath Channel

Measurements of BER vs. CN were made using a fading channel simulator. The DU ratios of a main signal and a delayed signal were set to 3 dB. Delay time of a delayed signal from a main signal was set to 1.5 μ sec. This multipath channel has no fading frequency. In the ADS simulation system, this multipath channel is simulated by UserDefChannel model; parameters were set as follows.

Symbol	Specification	Simulation Type	Value
UserDefChannel	PathNumber	ADS Ptolemy	2
UserDefChannel	AmpArray	ADS Ptolemy	"0.8165 0.5773"
UserDefChannel	DelayArray	ADS Ptolemy	"0.0 1.5"
AntMobile	Vx	ADS Ptolemy	0


The figure below shows the transmitted Byte data and the received Byte data when carrier-to-noise ratio (CN) is 10dB and 13dB in the multipath channel simulation.


Compare RxByte with TxByte with different CN

Index		Index	[::]	[::]
185	90.000	88733	90.000	90.000
186	108.000	88734	108.000	108.000
187	15.000	88735	15,000	15.000
188	71.000	88736	71,000	71.000
189	109.000	88737	109.000	109.000
190	65.000	88738	65.000	65.000
191	91.000	88739	91,000	91.000
192	186.000	88740	186.000	186,000
193	156.000	88741	156.000	156.000
194	112.000	88742	112.000	112.000
195	10.000	88743	10.000	10.000
196	35.000	88744	35.000	35.000
197	47.000	88745	47.000	47.000
198	113.000	88746	113.000	113,000
199	161,000	88747	161,000	161,000
200	157.000	88748	157,000	157,000
201	198.000	88749	198,000	198,000
202	65.000	88750	65,000	65,000
203	221.000	88753	221.000	221,000
204	10.000	88752	10,000	10,000
205	246.000	88753	246.000	246.000
206	119.000	88754	119,000	119,000
207	193.000	88755	193.000	193.000
208	221.000	88756	221.000	221.000
209	163.000	88757	163.000	163.000
210	210.000	88758	210.000	210.000
211	190.000	88759	190.000	190,000
212	170.000	88760	170.000	170,000
213	237.000	88761	237.000	237.000
214	157.000	88762	157.000	157.000
215	166.000	88763	166.000	166,000
216	118.000	88764	118.000	118.000
217	205.000	88765	205.000	205.000
218	41,000	88766	41,000	41,000
219	86.000	88767	86.000	86.000
220	84.000	88768	84.000	84.000
221	100.000	88769	100.000	100.000
222	73,000	88770	73.000	73,000

The BER of the full system before RS decoding is shown below. The CN is 11.8dB when BER is 0.0002.

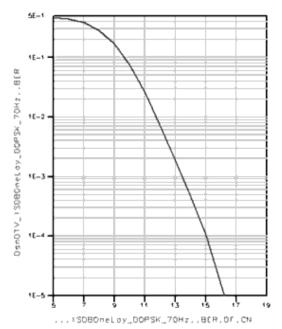
Multipath Channel BER

Measurements of BER vs. CN were made using a fading channel simulator. 2-path Rayleigh fading was used and the DU ratio was set to 0 dB. Delay time of a delayed signal from a main signal was set to 1.5 msec. This multipath channel has a 70-Hz fading

Advanced Design System 2011.01 - DTV Design Library

frequency. In the ADS simulation system, this multipath channel is simulated by UserDefChannel model; parameters were set as follows:

Symbol	Specification	Simulation Type	Value
UserDefChannel	PathNumber	ADS Ptolemy	2
UserDefChannel	AmpArray	ADS Ptolemy	"0.707 0.707"
UserDefChannel	DelayArray	ADS Ptolemy	"0.0 1.5"
AntMobile	Vx	ADS Ptolemy	124.0


The figure below shows the transmitted and received Byte data when carrier-to-noise ratio (CN) is 5dB and 15dB in the Rayleigh channel simulation. In the figure below, the second column is the received Byte of the CN=5dB, the third column is the received Byte of 15dB . Compared to TxByte, the second column has more errors than the third.

Compare RxByte with TxByte with different CN

0 71.000 88548 165.000 1 183.000 88549 252.000 2 87.000 88550 172.000 3 191.000 88551 204.000 4 201.000 88552 102.000 5 229.000 88552 102.000 6 107.000 88554 236.000 7 39.000 88555 150.000 8 119.000 88557 17.000 9 17.000 88557 17.000 9 17.000 88558 126.000 10 203.000 88558 126.000 11 81.000 88558 126.000 12 152.000 88563 59.000 13 63.000 88563 121.000 14 2.000 88563 121.000 15 98.000 88563 121.000 16 235.000 88565 91.000 17 208.000	71.000 183.000 87.000 201.000 229.000 107.000 39.000 119.000
2 87,000 88550 172,000 3 191,000 88551 204,000 4 201,000 88551 204,000 5 229,000 88552 102,000 6 107,000 88553 184,000 7 39,000 88555 150,000 7 19,000 88554 16,000 9 17,000 88557 17,000 10 203,000 88558 126,000 11 81,000 88558 126,000 12 152,000 88560 59,000 13 63,000 88561 180,000 14 2,000 88561 120,000 15 98,000 88561 121,000 16 235,000 88564 235,000 18 44,000 88566 44,000	87.000 191.000 201.000 229.000 107.000 39.000 119.000
4 201,000 88552 102,000 5 229,000 88553 184,000 6 107,000 88554 236,000 7 39,000 88554 236,000 8 119,000 88557 170,000 9 17,000 88557 17,000 10 203,000 88558 126,000 11 81,000 88559 179,000 12 152,000 88560 59,000 13 63,000 88561 180,000 14 2,000 88563 121,000 15 98,000 88563 121,000 16 235,000 88563 91,000 18 44,000 88566 44,000	191.000 201.000 229.000 107.000 39.000 119.000
4 201,000 88552 102,000 5 229,000 88553 184,000 6 107,000 88554 236,000 7 39,000 88554 236,000 8 119,000 88557 170,000 9 17,000 88557 17,000 10 203,000 88558 126,000 11 81,000 88559 179,000 12 152,000 88560 59,000 13 63,000 88561 180,000 14 2,000 88563 121,000 15 98,000 88563 121,000 16 235,000 88563 91,000 18 44,000 88566 44,000	201.000 229.000 107.000 39.000 119.000
5 229,000 88553 184,000 6 107,000 88554 236,000 7 39,000 88555 150,000 8 119,000 88556 16,000 9 17,000 88558 126,000 10 203,000 88558 126,000 11 81,000 88559 179,000 12 152,000 88561 180,000 13 63,000 88561 180,000 14 2,000 88563 121,000 15 98,000 88564 235,000 16 235,000 88564 235,000 18 44,000 88566 44,000	229.000 107.000 39.000 119.000
6 107.000 88554 236.000 7 39.000 88555 150.000 8 119.000 88556 16.000 9 17.000 88557 17.000 10 203.000 88558 126.000 11 81.000 88559 179.000 12 152.000 88561 180.000 13 63.000 88561 180.000 14 2.000 88561 170.000 15 98.000 88562 171.000 16 235.000 88564 235.000 17 208.000 88566 91.000 18 44.000 88566 44.000	107.000 39.000 119.000
7 39.000 88555 150.000 8 119.000 88557 17.000 9 17.000 88557 17.000 10 203.000 88558 126.000 11 81.000 88558 179.000 12 152.000 88560 59.000 13 63.000 88561 180.000 14 2.000 88563 121.000 15 98.000 88563 121.000 16 235.000 88564 235.000 17 208.000 88566 91.000 18 44.000 88566 44.000	39.000
8 119.000 88556 16.000 9 17.000 88557 17.000 10 203.000 88558 126.000 11 81.000 88559 179.000 12 152.000 88561 180.000 13 63.000 88561 180.000 14 2.000 88563 171.000 15 98.000 88563 171.000 16 235.000 88564 235.000 17 208.000 88566 91.000 18 44.000 88566 44.000	119.000
9 17.000 88557 17.000 10 203.000 88558 126.000 11 81.000 88558 129.000 12 152.000 88560 59.000 13 63.000 88561 180.000 14 2.000 88563 121.000 15 98.000 88563 121.000 16 235.000 88565 91.000 18 44.000 88566 44.000	
10 203.000 88558 126.000 11 81,000 88559 179.000 12 152,000 88560 59.000 13 63,000 88561 180.000 14 2,000 88563 121.000 15 98,000 88563 121.000 16 235.000 88564 235.000 17 208.000 88566 91.000 18 44.000 88566 44.000	
11 81,000 88559 179,000 12 152,000 88560 59,000 13 63,000 88561 180,000 14 2,000 88562 69,000 15 98,000 88563 121,000 16 235,000 88564 235,000 17 208,000 88566 91,000 18 44,000 88566 44,000	17,000
12 152,000 88560 59,000 13 63,000 88561 180,000 14 2,000 88562 69,000 15 98,000 88563 121,000 16 235,000 88564 255,000 17 208,000 88565 91,000 18 44,000 88566 44,000	203.000
13 63,000 88561 180,000 14 2,000 88562 69,000 15 98,000 88563 121,000 16 235,000 88563 235,000 17 208,000 88566 235,000 18 44,000 88566 44,000	81,000
14 2,000 88562 69,000 15 98,000 88563 121,000 16 235,000 88564 235,000 17 208,000 88565 91,000 18 44,000 88566 44,000	152,000
15 98,000 88563 121,000 16 235,000 88564 235,000 17 208,000 88565 91,000 18 44,000 88566 44,000	63,000
16 235,000 88564 235,000 17 208,000 88565 91,000 18 44,000 88566 44,000	2.000
17 208,000 88565 91,000 18 44,000 88566 44,000	98.000
18 44,000 88566 44,000	235,000
	208,000
	44,000
19 165.000 88567 156.000 20 138.000 88568 63.000	165,000
20 138.000 88568 63.000 21 221.000 88569 168.000	138.000
22 239,000 88570 19,000	239.000
22 239.000 88570 19.000 23 84.000 88571 238.000	84.000
24 64.000 88572 114.000	64.000
25 120.000 88573 160.000	120.000
26 232.000 88574 174.000	232.000
27 184.000 88575 55.000	184.000
28 166,000 85576 166,000	166.000
29 137,000 88577 155,000	137.000
30 97,000 88578 147,000	97.000
31 109,000 88579 107,000	109.000
32 226,000 88580 16,000	226.000
33 119.000 88581 128.000	119.000
34 64,000 88582 176,000	
35 114,000 88583 170,000	64.000
36 171.000 88584 106.000	

The BER of the full system before RS decoding is shown below. The CN is 14.5dB when BER is 0.0002.

Rayleigh Channel BER

Benchmark

- Hardware Platform: Pentium II 200 MHz, 128 MB memory
- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: 2 × 188-1 Bytes
- Simulation Time: 16 hours for AWGN channel, 22 hours for multipath channel, 40 hours for Rayleigh channel

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

3-Layer ISDB-T System Design

DTV_ISDBSystem_wrk Design Name

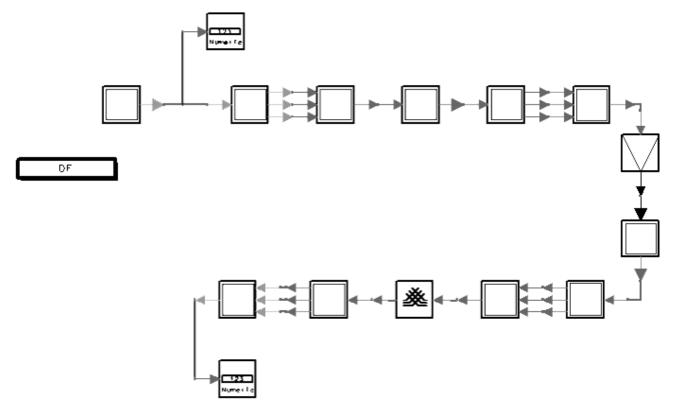
DsnDTV_ISDBThrLay_System

Features

- 3-layer system design
- Different modulation mode and code rate for each layer

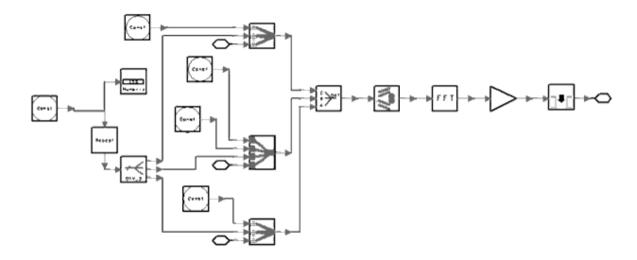
- Reed-Solomon coding and decoding
- Punctured convolutional coding and decoding
- Mode 1 OFDM adaptation
- Byte-wise interleaving and deinterleaving
- Time interleaving and deinterleaving
- Frequency interleaving and deinterleaving

Description

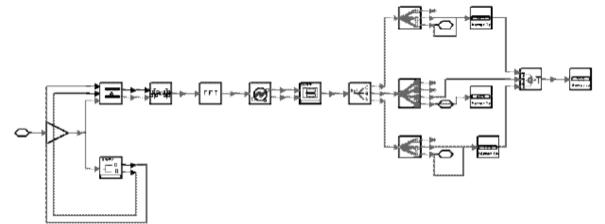

This design is a 3-layer system design example of ISDB-T. It includes 13 segments (1 segment for Layer A, 5 segments for Layer B, and 7 segments for Layer C). The modulation modes and code rates are 64-QAM, 2/3, and DQPSK, 1/2, and 16-QAM, 3/4 in Layer A, Layer B, and Layer C, respectively.

In the OFDM adaptation, the 3-layer full system design works in mode 1. The IFFT/ FFT size is 2048; the guard interval is 1/16 of IFFT size. The simulation channel is the TDMA channel. The byte in transmitter and receiver, the received 64-QAM, DQPSK, and 16-QAM constellations are shown in the simulation results.

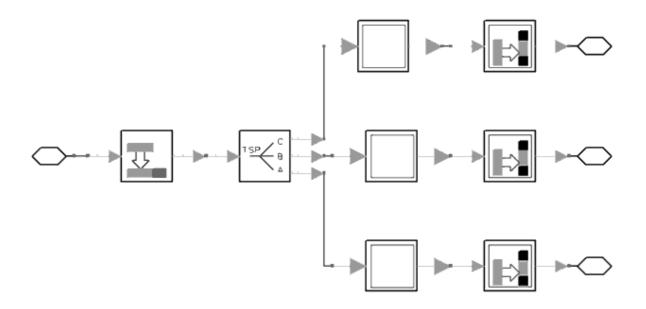
Schematics


The figure below shows the schematic for this design.

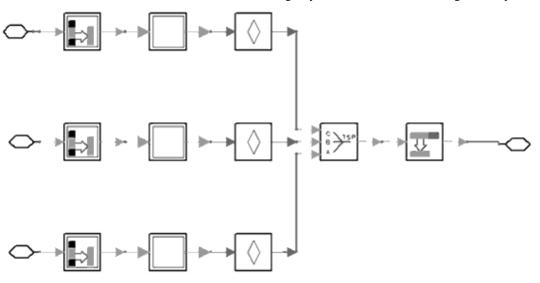
DsnDTV_ISDBThrLay_System

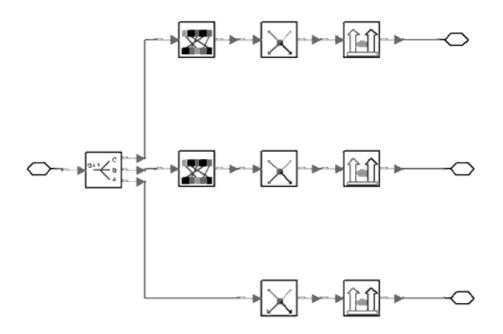

The subnetwork designs are shown in the figures below.

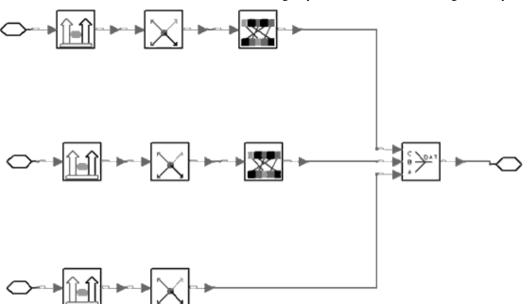
sub_ISDBOFDM_ThrLayMod



sub_ISDBOFDM_ThrLayDemod


Advanced Design System 2011.01 - DTV Design Library


sub_ISDBThrLay_ChCoder


sub_ISDBThrLay_ChDecoder

sub_ISDBThrLay_FreqInterlv

sub_ISDBThrLay_FreqDeinterlv

Specifications

Specification (Parameter)	Simulation Type	Value
Carriers	ADS Ptolemy	96
Segments	ADS Ptolemy	13
IFFTSize	ADS Ptolemy	2048
FFTSize	ADS Ptolemy	2048
Guard	ADS Ptolemy	128
IFFTOrder	ADS Ptolemy	11
FFTOrder	ADS Ptolemy	11
MaxDelay	ADS Ptolemy	2047
SegmentsA	ADS Ptolemy	1
SegmentsB	ADS Ptolemy	5
SegmentsC	ADS Ptolemy	7
Ru	ADS Ptolemy	0.9

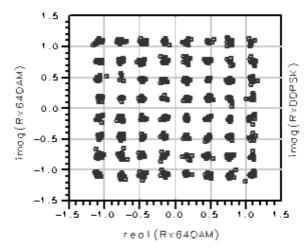
Notes

- 1. The propagation channel model used in this example is a standard TDMA channel.
- The DelayByte parameter of the punctured convolutional decoder model (DTV_PunConvDecoder) is used to adjust delays caused by OFDM demodulation (which is one OFDM symbol) and two additional OFDM symbol delays, which correspond to the bit interleaving procedure because delay adjustment for bit interleaving is 2 OFDM symbols.
- 3. Total delay caused by byte-wise interleaving and deinterleaving is $17 \times 11 \times 12$ bytes (corresponding to 11 TSPs). Because the OFDM symbol is transmitted as an OFDM frame, delay of the TSPs is adjusted to one OFDM frame.
- 4. Total delay caused by time interleaving and deinterleaving is adjusted in accordance with an integer I as shown in table 4-3 in ISDB-T. Because I=4 in this 3-layer design,

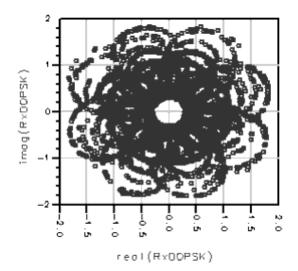
the number of OFDM frames to be delayed by the delay adjustment and time interleaving is 2.

5. The last delay adjusted in this design generates the number of total null TSP bytes which is needed per operation in DTV_SynThreeLayTSP model.

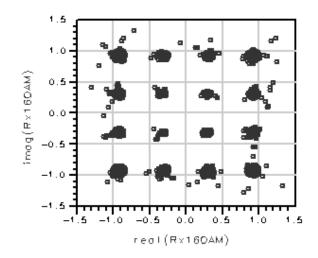
Simulation Results


The figure below shows the transmitted and received TSP data.

Compare RxTSP with TxTSP


Index	⊺x8yte	teday	R x8yte
Index	4.000	(nder	4.000
0	71,000	208680	71.000
1	218.000	208681	218.000
2	50,000	208682	50.000
3	141,000	208683	141.000
4	17,000	208684	17.000
5	156.000	208685	156.000
6	29.000	208686	29.000
7	142.000	208687	142.000
8	56.000	208688	56.000
.9	58.000	208689	58.000
10	136.000	208690	135,000
	213.000	208691	213.000
12	147.000	208692	147,000
13	189.000	208693 208694	189,000
15	106.000	208695	105.000
10	219,000	208695	219,000
17	207,000	208697	207.000
18	131,000	208698	131,000
19	187,000	208699	187,000
20	143,000	208700	143.000
21	212.000	208701	212.000
22	4,000	208702	4.000
23	7,000	208703	7,000
24	27,000	208704	27.000
25	158,000	208705	158,000
26	45.000	208706	45,000
27	10.000	208707	10.000
28	87.000	208708	67,000
29	211,000	208709	211.000
30	15,000	208710	15.000
31	150,000	208711	150.000
32	164,000	208712	164.000
33	241,000	208713	241.000
34	151,000	208714	151.000
35	7,000	208715	7,000

The three figures below show the received constellations for Layers A, B, and C.


Received Constellation for Layer A

Received Constellation for Layer B

Received Constellation for Layer C

Benchmark

- Hardware Platform: Pentium II 200 MHz, 128 MB memory
- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: $188 \times ((12 \times 5 + 36 \times 7 + 48 \times 1) \times 3 + 40)$ Bytes
- Simulation Time: 1 hour and 8 minutes

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

2-Layer ISDB-T System Design

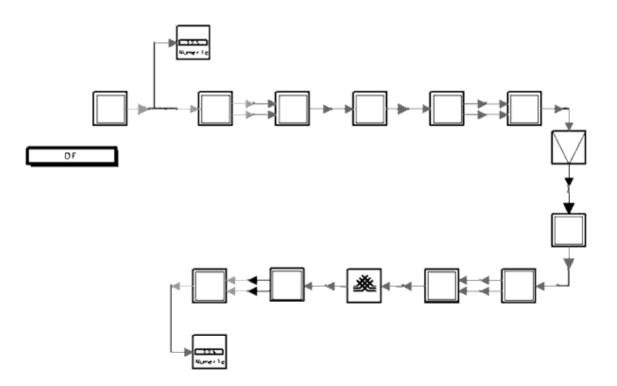
DTV_ISDBSystem_wrk Design Name

DsnDTV_ISDBTwoLay_System

Features

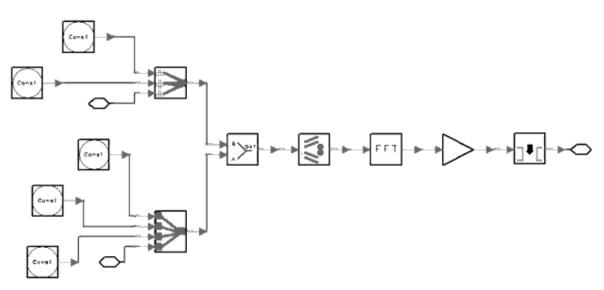
- 2- layer system design
- Different modulation mode and code rate for each layer
- Reed-Solomon coding and decoding
- Punctured convolutional coding and decoding
- Mode 1 OFDM adaptation
- Byte-wise interleaving and deinterleaving
- Time interleaving and deinterleaving
- Frequency interleaving and deinterleaving

Description

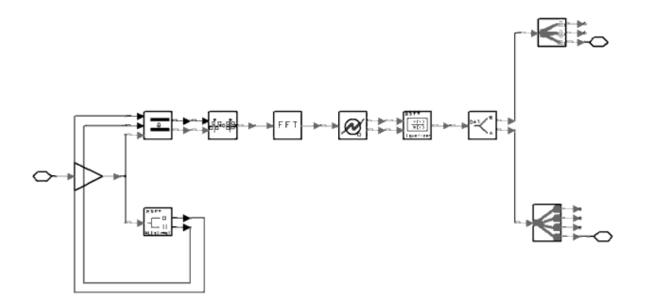

This design is a 2-layer system example of ISDB-T. It includes 13 segments (5 segments for Layer A, 8 segments for Layer B). Modulation modes and code rates are DQPSK, 1/2, and 64-QAM, 7/8 in Layer A and Layer B, respectively.

In the OFDM adaptation, the 2-layer full system design works in mode 1. The IFFT/ FFT size is 2048; the guard interval is 1/8 of IFFT size. The simulation channel is the TDMA channel. The byte in transmitter and receiver, the received DQPSK and 64-QAM constellations are shown in the simulation results.

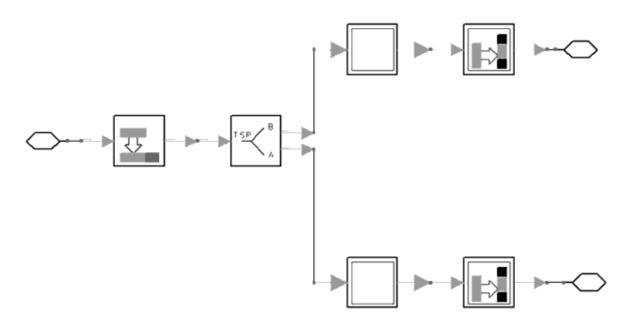
Schematics


The figure below shows the schematic for this design.

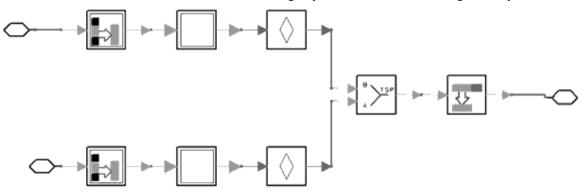
DsnDTV_ISDBTwoLay_System



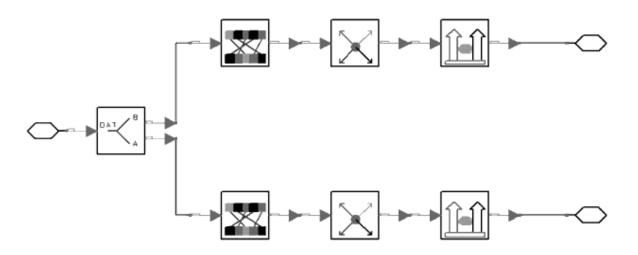
The coding and decoding subnetwork designs are shown in the figures below.


sub_ISDBOFDM_TwoLayMod

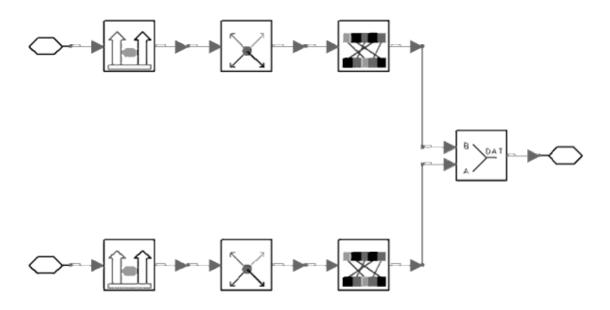
sub_ISDBOFDM_TwoLayDemod



sub_ISDBTwoLay_ChCoder



sub_ISDBTwoLay_ChDecoder


Advanced Design System 2011.01 - DTV Design Library

sub_ISDBTwoLay_FreqInterlv

sub_ISDBTwoLay_FreqDeinterlv

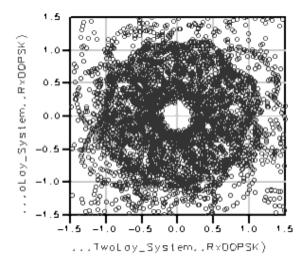
Specifications

Specification (Parameter)	Simulation Type	Value
Carriers	ADS Ptolemy	96
Segments	ADS Ptolemy	13
IFFTSize	ADS Ptolemy	2048
FFTSize	ADS Ptolemy	2048
Guard	ADS Ptolemy	256
IFFTOrder	ADS Ptolemy	11
FFTOrder	ADS Ptolemy	11
MaxDelay	ADS Ptolemy	2047
SegmentsA	ADS Ptolemy	5
SegmentsB	ADS Ptolemy	8
Ru	ADS Ptolemy	0.9

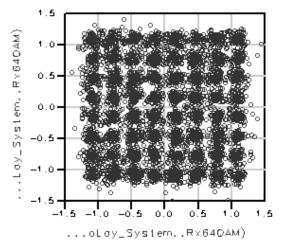
Notes

- 1. The propagation channel model used in this example is a standard TDMA channel.
- The DelayByte parameter of the punctured convolutional decoder model (DTV_PuncConvDecoder (dtv)) is used to adjust delays caused by OFDM demodulation (which is one OFDM symbol) and two additional OFDM symbols delay which is corresponding to the bit interleaving procedure because delay adjustment for bit interleaving is 2 OFDM symbols.
- 3. Total delay caused by byte-wise interleaving and deinterleaving is $17 \times 11 \times 12$ bytes (corresponding to 11 TSPs). Because the OFDM symbol is transmitted as an OFDM frame, in this design the delay of the TSPs is adjusted to one OFDM frame.
- 4. Total delay caused by time interleaving and deinterleaving is adjusted in accordance with an integer I as shown in table 4-3 in ISDB-T. Because I=4 in this 2-layer design, the number of OFDM frames to be delayed by delay adjustment and time interleaving is 2.
- 5. The last delay adjusted in this design generates the number of total null TSP bytes which is needed per operation in DTV_SynTwoLayTSP model.

Simulation Results


<u>Compare RxTSP with TxTSP</u> shows the transmitted and received TSP data.

<u>Received Constellation for Layer A</u> and <u>Received Constellation for Layer B</u> show the received constellation of Layer A and B.


Compare RxTSP with TxTSP

Index	RyByle	Index	1∀8yte
208680	71,000	0	71,000
208681	218,000	1	218.000
208682	50,000	2	50.000
208683	141,000	3	141,000
208684	17,000	2 3 4	17,000
208685	156,000	5	156,000
208686	29.000	6	29.000
208687	142.000	ž	142.000
208688	56.000	8	56.000
208689	58.000	9	58.000
208690	136,000	10	136,000
208691	213,000	11	213.000
208692	147,000	12	147.000
208693	189.000	13	189.000
208694	106,000	14	106.000
208695	159,000	15	159,000
208696	219.000	16	219.000
208697	207.000	17	207.000
208698	131.000	18	131,000
208699	187.000	19	187,000
208700	143.000	20	143.000
208701	212.000		212,000
208702	4.000	21 22	4.000
208702	7.000	23	7,000
208704	27,000	20	27,000
208705	158,000	24 25	158,000
208706		20	
208707	45.000	26 27	45,000
208708	67,000		67,000
		28 29	
208709	211.000		211.000
208710	15,000	30	15.000
208711	150.000	31	150.000
208712	164.000	32	164.000
208713	241.000	22	241.000
208714	151.000	34	151,000
208715	7.000	35	7.000
208716	178.000	36	178,000
208717	56.000	37	56.000
208718	34.000	38	34.000
208719	175.000	39	175.000
208720	240.000	40	240.000

Received Constellation for Layer A

Received Constellation for Layer B

Benchmark

- Hardware Platform: Pentium II 200 MHz, 128 MB memory
- Software Platform: WindowsNT 4.0 Workstation, ADS 1.3
- Data Points: 188 × ((12 × 5 + 63 × 8) × 3 + 47 + 47) Bytes
- Simulation Time: 1 hour and 26 minutes

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

TMCC in ISDB-T 1-Layer System Design

DTV_ISDBSystem_wrk Design Name

DsnDTV_TMCCMod

Features

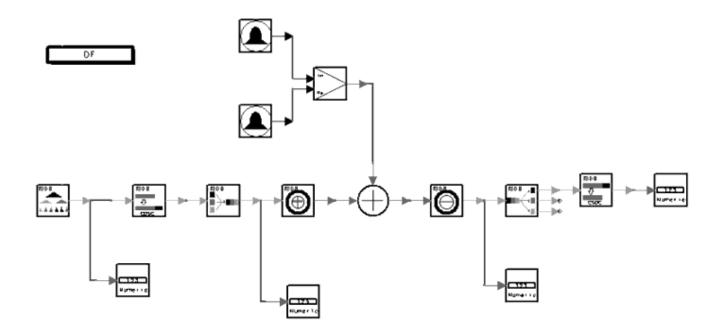
Displays include:

- TMCCInfoT (102 TMCC information bits in the transmitter)
- TMCCT (204 TMCC bits in the transmitter after channel coding)
- TMCCInfoR (102 TMCC information bits in the receiver after channel decoding)
- TMCCR (204 TMCC bits in the receiver after TMCC modulation, AWGN channel, and demodulation)

Description

This design example illustrates how to use TMCC models in ISDB-T 1-layer systems. It includes TMCC information multiplexing and de-multiplexing, channel coding and decoding, and modulation and demodulation of TMCC carriers.

If the 1-layer ISDB-T system works in mode 3 and uses 13 segments, its modulation scheme of OFDM carrier is DQPSK, coding rate of inner code is 1/2, length of time interleaving is 2, then the first 122 TMCC bits should be:


1	1	0	1											
1		1	-											
1	1	1												
1	1	1												
1	1		1											
1	1	1												
1	1	1												
1	1	1												
1	1		1											
1														
1	1	1												
1	1	1												
1	1	1												
1	1	1	1											
1	1	1												
1	1	1												
1	1	1												
1	1	1	1											
1	1	1												
1	1	1												
1	1	1												
1	1	1	1											
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

We can compare the results of this design with the previous 122 TMCC bits in the dds file.

Schematics

The figure below shows the schematic for this design.

DsnDTV_TMCCMod

Simulation Results

The figure below shows the 102 TMCC information bits in the transmitter before channel coding and in the receiver after channel docoding. The first column is the information bits in the transmitter; the second column is the information bits in the receiver; the third column is the error between the information bits.

Index	nfoT	nfoR	errl
0 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 20 11 2 12 2 12 2 2 2 2 2 2 2 2 2 2 2 2	0.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000	0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000000	

102 TMCC information Bits in the Transmitter and Receiver

The figure below shows the 204 TMCC bits in the transmitter before modulation and in the receiver after de-modulation. The first column is the transmitter bits; the second column is the receiver bits; the third column is the error between the information bits.

204 TMCC bits in the Transmitter and Receiver

Advanced Design System	2011.01 - DTV	Design Library

Index	TMCCT	TMCCR	errT
012345678901234567890123456789012 1112345678901222222222223333 3333	$\begin{array}{c} 0.000\\ 0.0000\\ 1.0000\\ 0.0000\\ $	$\begin{array}{c} 0.000\\ 0.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 0.0000\\ 1.0000\\ 0.0000\\ $	

Benchmark

- Hardware Platform: Pentium III 450 MHz, 512 MB memory
- Software Platform: Windows NT 4.0 Workstation, ADS 1.3
- Data Points: 408
- Simulation Time: 5 seconds

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

TMCC in ISDB-T 3-Layer System Design

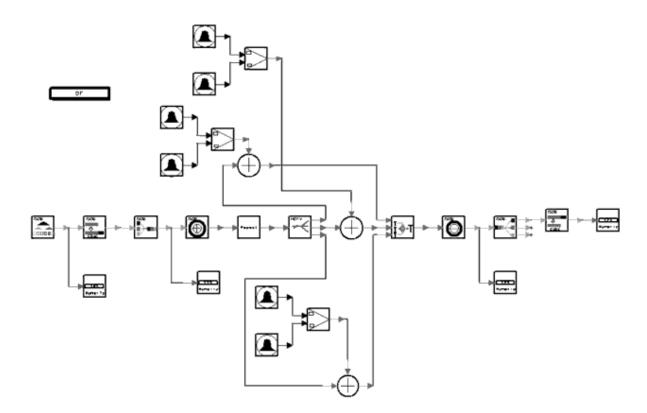
DTV_ISDBSystem_wrk Design Name

DsnDTV_TMCCThrLay

Features

Displays include:

- TMCCInfoT (102 TMCC information bits in the transmitter)
- TMCCT 204 TMCC bits in the transmitter after channel coding)
- TMCCInfoR (102 TMCC information bits in the receiver after channel decoding)
- TMCCR (204 TMCC bits in the receiver after TMCC modulation, AWGN channel, and demodulation)


Description

This design example illustrates how to use TMCC models in ISDB-T 3-layer systems. It includes TMCC information multiplexing and de-multiplexing, channel coding and decoding, and modulation and demodulation of TMCC carriers.

Schematics

The figure below shows the schematic for this design.

DsnDTV_TMCCThrLay

Simulation Results

<u>102 Bits TMCC Information in Transmitter and Receiver</u> lists the 102 bits TMCC information bits in the transmitter before channel coding and in the receiver after channel docoding. The first column is the 102 TMCC information bits in the transmitter; the second column is the 102 information bits in the receiver; the third column is the error between both 102 TMCC information bits.

<u>204 TMCC Bits in Transmitter and Receiver</u> shows the 204 bits TMCC bits in the transmitter before modulator and in the receiver after de-modulator. The first column is the 204 TMCC bits in the transmitter, the second column is the 204 TMCC bits in the receiver, and the third column is the error between both 204 TMCC information bits.

102 Bits TMCC Information in Transmitter and Receiver

Index	TMCCInfoT	1MCCInfoR	erri
0	0.000	0.000	0.000
1	0.000	0.000	0.000
2 3	1,000	1,000	0.000
	1,000	1,000	0.000
4	1,000	1,000	0.000
5	1.000	1.000	0.000
6	0.000	0.000	0.000
7	0.000	0.000	0.000
8	0.000	0.000	0.000
10	0.000	0.000	0.000
11	0.000	0.000	0.000
12	0.000	0.000	0.000
13	0,000	0.000	0,000
14	0.000	0.000	0.000
15	1.000	1,000	0.000
16	0.000	0.000	0.000
17	0.000	0.000	0.000
18	0.000	0.000	0.000
19	0.000	0.000	0.000
20	1.000	1.000	0.000
22	1,000	1,000	0.000
23	0.000	0.000	0.000
24	0.000	0.000	0.000
25	1,000	1,000	0.000
26	0.000	0.000	0.000
27	0.000	0.000	0.000
28	1,000	1.000	0.000
29	0.000	0.000	0.000
30	0.000	0.000	0.000
31	1.000	1.000	0.000
32 33	0.000	D.000 1.000	0.000
34	0.000	0,000	0,000
35	1,000	1,000	0.000
36	1,000	1,000	0.000
37	0,000	0.000	0.000
38	0,000	0.000	0.000

204 TMCC Bits in Transmitter and Receiver

Index	TMCCT	TMCCR	errR
0	0.000	0.000	0.000
1	0.000	0.000	0.000
23	0.000	0.000	0.000
4	1.000	1,000	0.000
5	0,000	0.000	0.000
6	1,000	1.000	0.000
ž	0,000	0.000	0.000
8	1.000	1.000	0.000
9	1,000	1,000	0.000
10	1,000	1,000	0.000
11	1,000	1,000	0.000
12	0.000	0.000	0.000
13 14	1,000	1,000	0.000
15	1,000	1,000	0.000
16	0.000	0.000	0.000
17	1.000	1.000	0.000
18	1,000	1,000	0.000
19	1.000	1.000	0.000
20	0.000	0.000	0.000
21	0.000	0.000	0.000
22	1,000	1,000	0.000
23 24	1.000	1,000	0.000
25	1,000	1,000	0.000
26	0.000	0.000	0.000
27	0.000	0.000	0.000
28	0.000	0.000	0.000
29	0.000	0.000	0.000
30	0.000	0.000	0.000
31	0.000	0.000	0.000
32	0.000	0.000	0.000
33	0.000	0.000	0.000
34 35	0,000	0.000	0.000
36	0.000	0.000	0.000
37	0.000	0.000	0.000
38	0.000	0.000	0.000

Benchmark

- Hardware Platform: Pentium III 450 MHz, 512 MB memory
- Software Platform: Windows NT 4.0 Workstation, ADS 1.3
- Data Points: 408
- Simulation Time: 5 seconds

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DVB-H Components

- DTV DVBHHierReceiver (dtv)
- DTV DVBHHierReceiver RF (dtv)
- DTV DVBHHierSignalSrc (dtv)
- DTV DVBHHierSignalSrc RF (dtv)
- DTV DVBHInnerDeinterlv (dtv)
- DTV DVBHInnerInterlv (dtv)
- DTV DVBHReceiver (dtv)
- DTV DVBHReceiver RF (dtv)
- DTV DVBHSignalSrc (dtv)
- DTV DVBHSignalSrc RF (dtv)
- DTV DVBHTPS (dtv)

DTV_DVBHHierReceiver

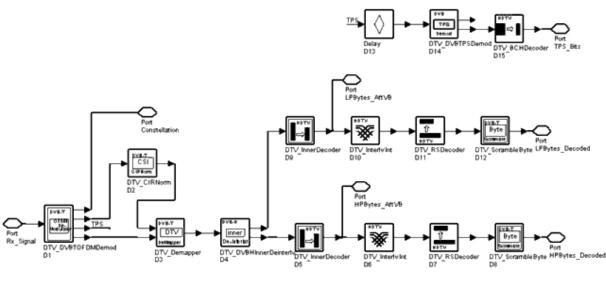
Description: DVB-H baseband hierarchical receiver **Library:** DTV, DVB-H **Class:** SDFDTV_DVBHHierReceiver

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	Transmission mode: Mode 2K, Mode 8K, Mode 4K	Mode 4K		enum	
OversamplingOption	Oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	Guard interval (frac FFT size)	1/32		int	[0, 1]
CodeRateHP	High priority stream current convolutional code rate: HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8	HP 1/2		enum	
CodeRateLP	Low priority stream current convolutional code rate: LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8	LP 1/2		enum	
MappingMode	Signal constellations and mapping: QAM-16, QAM-64	QAM-16		enum	
Alpha	Non-uniform factor for DVB-H	1		int	[1,∞)
InnerInterlv	Inner interleaving type: Native, In-depth	In- depth		enum	
SoftDecision	Soft decision viterbi decoding type: Soft, Hard, Cochannel	Soft		enum	
TrunLen	Path memory truncation length of viterbi decoding algorithm, in bytes	10		int	[5, ∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	Rx_Signal	received OFDM signal to be demodulated	complex


Pin Outputs

Pin	Name	Description	Signal Type
2	HPBytes_Decoded	decoded bytes after Reed Solomon decoder of high priority layer	int
3	LPBytes_Decoded	decoded bytes after Reed Solomon decoder of low priority layer	int
4	HPBytes_AftVB	decoded bytes after viterbi decoder of high priority layer	int
5	LPBytes_AftVB	decoded bytes after viterbi decoder of low priority layer	int
6	TPS_Bits	decoded TPS information bits	int
7	Constellation	constellation signal after OFDM demodulation	complex

Notes/Equations

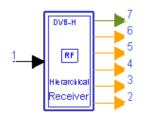
1. This subnetwork model implements a DVB-H baseband hierarchical receiver. The schematic for this subnetwork is shown below.

DTV_DVBHHierReceiver Schematic

VAR VAR

2. Implementation

- Start of OFDM symbol is detected. In the DTV_DVBTOFDMDemod subnetwork:
 - DTV_MLEstimator calculates the correlation based on guard interval; DTV_LoadFFTBuff selects the index with the maximum correlation value as the start of FFT.
 - Complex channel impulse responses are estimated on continual and scattered pilot subcarriers. Channel impulse responses of data subcarriers are interpolated based on the estimated CIR. This function is implemented by DTV_DVB2DChEstimator.
 - Each subcarrier value is divided by a complex estimated channel response coefficient. This simple one-tap frequency domain channel response compensation is implemented by DTV_OFDMEqualizer.
 - After equalization, DTV_DVBDemuxOFDMSym demultiplexes 1705, 3409, or 6817 subcarriers into 1512 (2K mode), 3024 (4K mode), or 6048 (8K mode) data subcarriers and 1 demodulated TPS.
- The demodulated data subcarriers (16- or 64-QAM modulated) are demapped by DTV_Demapper.
- Demodulated soft bits are deinterleaved by DTV_DVBHInnerDeinterlv.
- De-interleaved bits are inner decoded (DTV_InnerDecoder), outer de-interleaved (DTV_InterlvInt), outer decoded (DTV_RSDecoder), and descrambled (DTV_ScrambleByte).
- Fully decoded stream bytes are output as HPBytes_Decoded and LPBytes_Decoded. Partially decoded stream bytes after inner decoding are output as HPBytes_AftVB and LPBytes_AftVB.
- The TPS signal is demodulated by DTV_DVBTPSDemod and the demodulated bits are decoded by DTV_BCHDecoder.
- Output pins of this receiver correspond to DTV_DVBHSignalSrc pins.


- The number of samples of each OFDM symbol (Rx_Signal input pin) is:
 - (1+GuardInterval)×2048×OversamplingOption (2K mode)
 - (1+GuardInterval)×4096×OversamplingOption (4K mode)
 - (1+GuardInterval)×8192×OversamplingOption (8K mode)
- Output at the Constellation pin is 1705 (2K mode), 3409 (4K mode), or 6817 (8K mode) per OFDM symbol.
- 3. Parameter Details
 - Mode specifies the 2K, 4K, or 8K transmission mode.
 - OversamplingOption specifies oversampling ratio 1, 2, 4, 8, 16, or 32 of the transmission signal. If OversamplingOption=Ratio 2, the IFFT size is 4096 (2K mode), 8192 (4K mode), or 16384 (8K mode).
 - GuardInterval specifies guard interval (also called cyclic extension) 1/32, 1/16, 1/8, or 1/4 for DVB-H for each symbol, as a fraction of the FFT time period. For proper demodulation, the value of the corresponding receiver must match the guard interval length actually used in the input signal.
 - CodeRateHP specifies the high priority stream convolutional code rate: 1/2, 2/3, 3/4, 5/6, or 7/8.
 - CodeRateLP specifies the low priority stream convolutional code rate: 1/2, 2/3, 3/4, 5/6, or 7/8.
 - MappingMode specifies signal constellation and mapping mode: 16- or 64-QAM.
 - Alpha is used for signal constellation and mapping as defined in DVB-H specifications.
 - If Alpha=1, uniform mapping of 16- or 64-QAM is used.
 - If Alpha=2 or 4, non-uniform mapping of 16- or 64-QAM is used.
 - SoftDecision specifies the Viterbi decoding algorithm mode.
 - If SoftDecision=Soft, the Viterbi decoding algorithm is a soft decision decoder and uses channel status information.
 - If SoftDecision=Hard, the Viterbi decoding algorithm is a hard decision decoder and does not use channel status information.
 - If SoftDecision=Cochannel, the Viterbi decoding algorithm is for co-channel measurement with PAL analog TV and digital DVB-T.
 - TrunLen sets truncation length (in bytes) in the Viterbi decoding algorithm. The path memory is 8×TrunLen bits in the Viterbi decoding algorithm.
- 4. Output Pin Delay Adjustment
 - There are different delays in different output pins.
 - The Constellation pin has 8 OFDM symbol delays. The 8 \times 1705 (2K mode), 8 \times 3409 (4K mode) or 8 \times 6817 (8K mode) constellation output signals are not used for EVM calculation.
 - DTV_BCHDecoder uses a 68-bit block. So a Delay component with N=60 is inserted before DTV_DVBTPSDemod. Pin TPS_Bits has one DVB-H frame (68 OFDM symbols) delay. The first 53 bits at TPS_Bits are not used.
 - Viterbi decoding introduces different delays for different path memory truncation lengths (TrunLen parameter). For synchronization in BER measurements, the delay between byte-interleaver and byte de-interleaver must be adjusted to a multiple of 12 bytes and the delay between randomizer and de-randomizer must be adjusted to a multiple of 204 bytes; both delays in the model have been adjusted to a multiple of 204 bytes.
 - The information bytes per one OFDM symbol in HPBytes_AftVB is calculated as follows:
 - DataPerOFDMSymbol=1512 (2K mode), 3024 (4K mode), or 6048 (8K mode)
 - CodedBlockSize=204
 - CR = 1/2, 2/3, 3/4, 5/6, or 7/8

- DVB_DelayOFDMSymbols=8
- InfoBytes_HP=2×DataPerOFDMSymbol×CR/8
- The delay of HPBytes_AftVB is Delay_AftVB_HP, calculated as follows:
 - DelayBytes_HP=DVB_DelayOFDMSymbols × InfoBytes_HP-(int(DVB_DelayOFDMSymbols × InfoBytes_HD/CodedBlockSize))×CodedBlockSize
 - InfoBytes_HP/CodedBlockSize))×CodedBlockSize
 N_HP=int((TrunLen+DelayBytes_HP)/CodedBlockSize)
 - Delay_AftVB_HP=(1+int((DVB_DelayOFDMSymbols × InfoBytes_HP) / CodedBlockSize)+N_HP)×CodedBlockSize.
- The information bytes per one OFDM symbol in LPBytes_AftVB is calculated as follows:
 - DataPerOFDMSymbol=1512 (2K mode), 3024 (4K mode), or 6048 (8K mode)
 - CodedBlockSize=204
 - MapRateLP=2 for 16-QAM or 4 for 64-QAM
 - CR = 1/2, 2/3, 3/4, 5/6 or 7/8
 - InfoBytes_LP=MapRateLP×DataPerOFDMSymbol×CR/8
- The delay of LPBytes_AftVB is Delay_AftVB_LP, calculated as follows:
 - DelayBytes_LP=DVB_DelayOFDMSymbols × InfoBytes_LP-(int(DVB_DelayOFDMSymbols × InfoBytes_LP/CodedBlockSize))×CodedBlockSize
 - N_LP=int((TrunLen+DelayBytes_LP)/CodedBlockSize)
 - Delay_AftVB_LP=(1+int((DVB_DelayOFDMSymbols×InfoBytes_LP) / CodedBlockSize)+N_LP)×CodedBlockSize.
- HPBytes_Decoded and LPBytes_Decoded each have 8 OFDM symbol and 11 transport MUX packets delays.
- The delay of HPBytes_Decoded is
 - Delay_AftDescramble_HP=(11+1+int(DVB_DelayOFDMSymbols×InfoBytes_HP / CodedBlockSize)+N_HP)×188.
- The delay of LPBytes_Decoded is
 - Delay_AftDescramble_LP=(11+1+int(DVB_DelayOFDMSymbols×InfoBytes_LP / CodedBlockSize)+N_LP)×188.
- 5. When connecting the receiver to the signal source in MER and BER measurements, the reference signal from the signal generator should be delayed according to the formula above.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBHHierReceiver_RF

Description: DVB-H RF hierarchical receiver **Library:** DTV, DVB-H **Class:** TSDFDTV_DVBHHierReceiver_RF

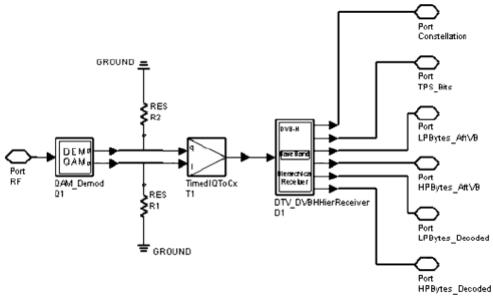
Parameters

Name	Description	Default	Unit	Туре	Range
RIn	Input resistance	DefaultRIn	Ohm	real	(0,∞)
RTemp	Physical temperature, in degrees C	DefaultRTemp	Celsius	real	[-273.15, ∞)
GainImbalance	Gain imbalance, Q vs I	0.0	dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
FCarrier	Carrier frequency	474.0MHz	Hz	real	(0,∞)
Sensitivity	Voltage output sensitivity, Vout/Vin	1		real	(-∞, ∞)
Phase	Reference phase in degrees	0.0	deg	real	(-∞, ∞)
Mode	Transmission mode: Mode 2K, Mode 8K, Mode 4K	Mode 4K		enum	
OversamplingOption	Oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	Guard interval (frac FFT size)	1/32		int	[0, 1]
CodeRateHP	High priority stream current convolutional code rate: HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8	HP 1/2		enum	
CodeRateLP	Low priority stream current convolutional code rate: LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8	LP 1/2		enum	
MappingMode	Signal constellations and mapping: QAM-16, QAM-64	QAM-16		enum	
Alpha	Non-uniform factor for DVB-H	1		int	[1, ∞)
InnerInterlv	Inner interleaving type: Native, In-depth	In-depth		enum	
SoftDecision	Soft decision viterbi decoding type: Soft, Hard, Cochannel	Soft		enum	
TrunLen	Path memory truncation length of viterbi decoding algorithm, in bytes	10		int	[5, ∞)

Pin Inputs

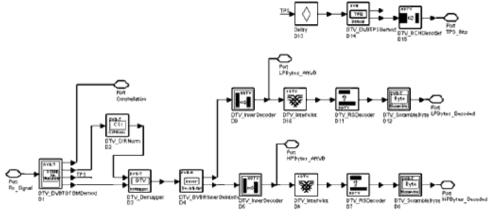
Pin	Name	Description	Signal Type
1	RF	received RF signal	timed

Pin Outputs


Advanced Design System 2011.01 - DTV Design Library

Pin	Name	Description	Signal Type
2	HPBytes_Decoded	decoded bytes after Reed Solomon decoder of high priority layer	int
3	LPBytes_Decoded	decoded bytes after Reed Solomon decoder of low priority layer	int
4	HPBytes_AftVB	decoded bytes after Viterbi decoder of high priority layer	int
5	LPBytes_AftVB	decoded bytes after Viterbi decoder of low priority layer	int
6	TPS_Bits	decoded TPS information bits	int
7	Constellation	constellation signal after OFDM demodulation	complex

Notes/Equations


 This subnetwork model implements RF hierarchical receiver functions according to the DVB-H standard. The schematic for this subnetwork is shown below. The received RF signal is demodulated and the demodulated signal is fed to the baseband receiver.

2. The schematic for the baseband receiver is shown below.

DTV_DVBHHierReceiver Schematic

VAR VAR

3. Implementation

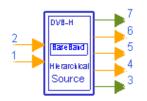
- Start of OFDM symbol is detected. In the DTV_DVBTOFDMDemod subnetwork:
 - DTV_MLEstimator calculates the correlation based on guard interval; DTV_LoadFFTBuff selects the index with the maximum correlation value as the start of FFT.
 - Complex channel impulse response are estimated on continual and scattered pilot subcarriers. Channel impulse responses of the data subcarriers are interpolated based on the estimated CIR. DTV_DVB2DChEstimator implements these functions.
 - Each subcarrier value is divided by a complex estimated channel response coefficient. This simple one-tap frequency domain channel response compensation is implemented by DTV_OFDMEqualizer.
 - After equalization, DTV_DVBDemuxOFDMSym demultiplexes 1705, 3409, or 6817 subcarriers into 1512 (2K mode), 3024 (4K mode), or 6048 (8K mode) data subcarriers and 1 demodulated TPS.
- The demodulated data subcarriers (16- or 64-QAM modulated) are demapped by DTV_Demapper.
- Demodulated soft bits are deinterleaved by DTV_DVBHInnerDeinterlv.
- De-interleaved bits are inner decoded (DTV_InnerDecoder), outer de-interleaved (DTV_InterlvInt), outer decoded (DTV_RSDecoder), and descrambled (DTV_ScrambleByte).
- Fully decoded stream bytes are output as HPBytes_Decoded and LPBytes_Decoded.
- Partially decoded stream bytes after inner decoding are output as HPBytes_AftVB and LPBytes_AftVB.
- The TPS signal is demodulated by DTV_DVBTPSDemod and the demodulated bits are decoded by DTV_BCHDecoder.
- The output pins of this receiver correspond to DTV_DVBHSignalSrc pins.
- The number of samples of each OFDM symbol (Rx_Signal input pin) are:
 - (1+GuardInterval)×2048×OversamplingOption (2K mode)
 - (1+GuardInterval)×4096×OversamplingOption (4K mode)
 - (1+GuardInterval)×8192×OversamplingOption (8K mode)
- The number of Constellation output pin is 1705 (2K mode), 3409 (4K mode), or 6817 (8K mode) per OFDM symbol.
- 4. Parameter Details
 - GainImbalance and PhaseImbalance add certain impairments to the ideal output RF signal. Impairments are added in the order described here.
 - The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

$$V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin\left(\omega_{c}t + \frac{\phi\pi}{180}\right)\right)$$

where V_1 (t) is the in-phase RF envelope, $V_2(t)$ is the quadrature phase RF

envelope,
$$g$$
 is the gain imbalance

and, Φ (in degrees) is the phase imbalance.


- FCarrier defines the RF frequency for the DVB signal.
- Mode specifies the 2K, 4K, or 8K transmission mode.
- OversamplingOption specifies oversampling ratio 1, 2, 4, 8, 16, or 32 of the transmission signal. If OversamplingOption=Ratio 2, the IFFT size is 4096 (2K mode), 8192 (4K mode), or 16384 (8K mode).
- GuardInterval specifies guard interval (also called cyclic extension) 1/32, 1/16, 1/8, or 1/4 for DVB-H for each symbol, as a fraction of the FFT time period. For proper demodulation, the value of the corresponding receiver must match the guard interval length actually used in the input signal.
- CodeRateHP specifies the high priority stream convolutional code rate: 1/2, 2/3, 3/4, 5/6, or 7/8.
- CodeRateLP specifies the low priority stream convolutional code rate: 1/2, 2/3, 3/4, 5/6, or 7/8.
- MappingMode specifies signal constellations and mapping: 16- or 64-QAM.
- Alpha is used for signal constellation and mapping as defined in DVB-H specifications.
 - If Alpha=1, uniform mapping of 16- or 64-QAM is used.
 - If Alpha=2 or 4, non-uniform mapping of 16- or 64-QAM is used.
- SoftDecision specifies the Viterbi decoding algorithm mode.
 - If SoftDecision=Soft, the Viterbi decoding algorithm is a soft decision decoder and uses channel status information.
 - If SoftDecision=Hard, the Viterbi decoding algorithm is a hard decision decoder and does not use channel status information.
 - If SoftDecision=Cochannel, the Viterbi decoding algorithm is for co-channel measurement with PAL analog TV and digital DVB-T.
- TrunLen sets truncation length (in bytes) in the Viterbi decoding algorithm. The path memory is 8×TrunLen bits in the Viterbi decoding algorithm.
- 5. Output Pin Delay Adjustment
 - The Constellation pin has 8 OFDM symbol delays. The 8 × 1705 (2K mode), 8 × 3409 (4K mode) or 8 × 6817 (8K mode) constellation output signals are not used for EVM calculation.
 - DTV_BCHDecoder uses a 68-bit block. So a Delay component with N=60 is inserted before DTV_DVBTPSDemod. Pin TPS_Bits has one DVB-H frame (68 OFDM symbols) delay. The first 53 bits at TPS_Bits are not used.
 - Viterbi decoding introduces different delays for different path memory truncation lengths (TrunLen parameter). For synchronization in BER measurements, the delay between byte-interleaver and byte de-interleaver must be adjusted to a multiple of 12 bytes and the delay between randomizer and de-randomizer must be adjusted to a multiple of 204 bytes; both delays in the model have been adjusted to a multiple of 204 bytes.
 - The information bytes per one OFDM symbol in HPBytes_AftVB is calculated as follows:
 - DataPerOFDMSymbol=1512 (2K mode), 3024 (4K mode), or 6048 (8K mode)

- CodedBlockSize=204
- CR = 1/2, 2/3, 3/4, 5/6, or 7/8
- DVB_DelayOFDMSymbols=8
- InfoBytes_HP=2×DataPerOFDMSymbol×CR/8
- The delay of HPBytes_AftVB is Delay_AftVB_HP, calculated as follows:
 - DelayBytes_HP=DVB_DelayOFDMSymbols × InfoBytes_HP-(int(DVB_DelayOFDMSymbols × InfoBytes HP/CodedBlockSize))×CodedBlockSize
 - N_HP=int((TrunLen+DelayBytes_HP)/CodedBlockSize)
 - Delay_AftVB_HP=(1+int((DVB_DelayOFDMSymbols × InfoBytes_HP) / CodedBlockSize)+N_HP)×CodedBlockSize.
- The information bytes per one OFDM symbol in LPBytes_AftVB is calculated as follows:
 - DataPerOFDMSymbol=1512 (2K mode), 3024 (4K mode), or 6048 (8K mode)
 - CodedBlockSize=204
 - MapRateLP=2 for 16-QAM or 4 for 64-QAM
 - CR = 1/2, 2/3, 3/4, 5/6 or 7/8
 - InfoBytes_LP=MapRateLP×DataPerOFDMSymbol×CR/8
- The delay of LPBytes_AftVB is Delay_AftVB_LP, calculated as follows:
 - DelayBytes_LP=DVB_DelayOFDMSymbols × InfoBytes_LP-(int(DVB_DelayOFDMSymbols × InfoBytes_LP(Code dBlackCies)))))
 - InfoBytes_LP/CodedBlockSize))×CodedBlockSize
 - N_LP=int((TrunLen+DelayBytes_LP)/CodedBlockSize)
 - Delay_AftVB_LP=(1+int((DVB_DelayOFDMSymbols×InfoBytes_LP) / CodedBlockSize)+N_LP)×CodedBlockSize.
- HPBytes_Decoded and LPBytes_Decoded each have 8 OFDM symbol and 11 transport MUX packets delays.
- The delay of HPBytes_Decoded is
 - Delay_AftDescramble_HP=(11+1+int(DVB_DelayOFDMSymbols×InfoBytes_HP / CodedBlockSize)+N_HP)×188.
- The delay of LPBytes_Decoded is
 - Delay_AftDescramble_LP=(11+1+int(DVB_DelayOFDMSymbols×InfoBytes_LP / CodedBlockSize)+N_LP)×188.
- 6. When connecting the receiver to the signal source in MER and BER measurements, the reference signal from the signal generator should be delayed according to the formula above.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBHHierSignalSrc

Description: DVB-H base-band hierarchical signal source **Library:** DTV, DVB-H **Class:** SDFDTV_DVBHHierSignalSrc

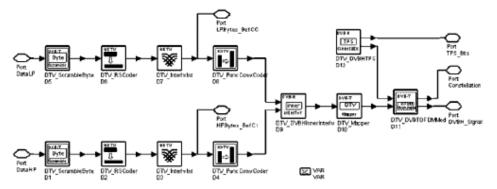
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	Transmission mode: Mode 2K, Mode 8K, Mode 4K	Mode 4K		enum	
OversamplingOption	Oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	Guard interval (frac FFT size)	1/32		real	[0, 1]
CodeRateHP	High priority stream convolutional code rate: HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8	HP 1/2		enum	
CodeRateLP	Low priority stream convolutional code rate: LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8	LP 1/2		enum	
MappingMode	Signal constellations and mapping: QAM-16, QAM-64	QAM-16		enum	
Alpha	Non-uniform factor for DVB-H	1		int	[1,∞)
InnerInterlv	Inner interleaving type: Native, In-depth	In-depth		enum	
Cell_ID	Cell identifier	0		int	[0, 65535]
TimeSlicing	Time slicing for DVB-H signalling: TimeSlicing Not-used, TimeSlicing Used	TimeSlicing Not-used		enum	
MPE_FEC	MPE-FEC for DVB-H signalling: MPE_FEC Not- used, MPE_FEC used	MPE_FEC Not- used		enum	
TPSLength	TPS length indicator (23 for version 1.2.1, 31 for version 1.5.1, 33 for DVB-H)	33		int	[23, 37]

Pin Inputs

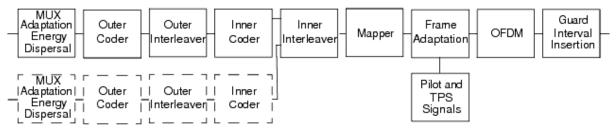
Pin	Name	Description	Signal Type
1	DataHP	Data input of high priority	int
2	DataLP	Data input of low priority	int

Pin Outputs


Advanced Design	System	2011 01 -	DTV	Design	Library
The valie of Design	bystem	2011.01		Design	Library

Pin	Name	Description	Signal Type
3	DVBH_Signal	DVBH base-band hierarchical signal	complex
4	HPBytes_BefCC	high priority information bytes before convolutional encoder	int
5	LPBytes_BefCC	low priority information bytes before convolutional encoder	int
6	TPS_Bits	TPS information bits	int
7	Constellation	constellation signal before IFFT	complex

Notes/Equations


 This subnetwork model generates a DVB-H hierarchical baseband signal. The schematic for this subnetwork, shown below, includes: scrambler (DTV_ScrambleByte); outer coder (DTV_RSCoder); outer interleaver (DTV_InterlvInt); inner coder (DTV_PuncConvCoder); inner interleaver (DTV_DVBHInnerInterlv); mapper (DTV_Mapper); frame adaptation, OFDM, and guard interval insertion (DTV_DVBTOFDMMod subnetwork); and, TPS generator (DTV_DVBHTPS).

DTV_DVBHHierSignalSrc Schematic

2. The DVB-H signal source format follows the DVB specification. The figure below shows the functional block diagram of the DVB-H baseband system.

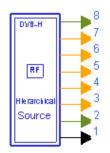
DVB-H Baseband System Block Diagram

3. When native inner interleaving is selected, the signal source generates one OFDM symbol each firing.

When InnerInterlv=In-depth inner interleaving, the signal source generates 1 OFDM symbol in the 8K mode (in-depth inner interleaving does not affect the 8K mode), 2 OFDM symbols in the 4K mode, and 4 OFDM symbols in the 2K mode.

For each OFDM symbol, the Constellation pin exports 1705 (2K mode), 3409 (4K

Advanced Design System 2011.01 - DTV Design Library mode), or 6817 (8K mode) particles.


The number of samples of each OFDM symbol (DVBH_signal pin) is:

- (1+GuardInterval)×2048×OversamplingOption (2K mode)
- (1+GuardInterval)×4096×OversamplingOption (4K mode)
- (1+GuardInterval)×8192×OversamplingOption (8K mode)
- 4. Input of the subnetwork is a transport stream (TS) defined in MPEG-2 Systems.
- 5. Parameter Details
 - Mode specifies a 2K, 4K, or 8K transmission mode as defined in DVB-H specification.
 - OversamplingOption specifies the oversampling ratio of the transmission signal. Oversampling ratios 1, 2, 4, 8, 16, 32 are supported in this source. If OversamplingOption = Ratio 2, the IFFT size is 4096 (2K mode), 8192 (4K mode), or 16384 (8K mode).
 - GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction of the FFT time period. Guard interval value of the corresponding receiver must match the guard interval length actually used in the input signal in order for the demodulation to work properly. It takes the value of 1/32, 1/16, 1/8 or 1/4 for DVB-H.
 - CodeRateHP is defined as convolutional code rate for the high priority stream. Code rates 1/2, 2/3, 3/4, 5/6 and 7/8 are available in this source. CodeRateLP is defined as convolutional code rate for the low priority stream. Code rates 1/2, 2/3, 3/4, 5/6 and 7/8 are available in this source.
 - MappingMode specifies signal constellations and mapping: 16- or 64-QAM.
 - Alpha is used for signal constellation and mapping (based on MappingMode).
 - If Alpha=1, uniform mapping of 16- or 64-QAM is used.
 - If Alpha=2 or 4, non-uniform mapping of 16- or 64-QAM is used as defined in DVB-H specification.
 - Cell_ID specifies the cell from which the signal comes from, it should belong to [0, 65535]. If not used, it should be set zero.
 - TPS_Length specifies the number of TPS information bits based on ETSI EN 300744 specification:
 - 23 (when cell identification information is not transmitted, MPE-FEC and Time Slicing information are not transmitted, DVB-T version 1.2.1).
 - 31 (when cell identification information is transmitted, MPE-FEC and Time Slicing information are not transmitted, DVB-T version 1.5.1).
 - 33 (when cell identification information is transmitted, MPE-FEC and Time Slicing information are transmitted, DVB-T version 1.5.1).

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBHHierSignalSrc_RF

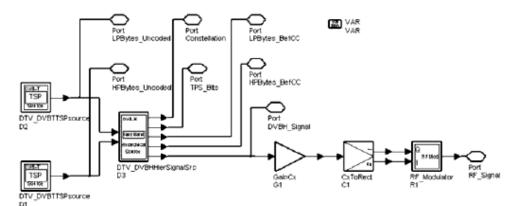
Description: DVB-H RF hierarchical signal source **Library:** DTV, DVB-H **Class:** TSDFDTV_DVBHHierSignalSrc_RF

Parameters

Advanced Design System 2011.01 - DTV	Design Library
--------------------------------------	----------------

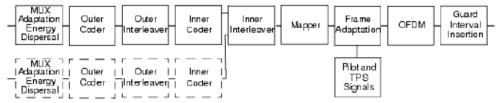
Name	Description	Default	Unit	Туре	Range
ROut	Output resistance	DefaultROut	Ohm	real	(0,∞)
RTemp	Physical temperature, in degrees C	DefaultRTemp	Celsius	real	[- 273.15, ∞)
FCarrier	Carrier frequency	474.0MHz	Hz	real	(0,∞)
Power	Modulator output power	40mW	W	real	(0,∞)
BasicSamplingRate	Basic sampling rate	(2048/224.0)MHz	Hz	real	(0,∞)
MirrorSpectrum	Mirror spectrum about carrier?: NO, YES	NO		enum	
GainImbalance	Gain imbalance, Q vs I	0.0	dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
I_OriginOffset	I origin offset (percent)	0.0		real	(-∞, ∞)
Q_OriginOffset	Q origin offset (percent)	0.0		real	(-∞, ∞)
IQ_Rotation	IQ rotation	0.0	deg	real	(-∞, ∞)
Mode	Transmission mode: Mode 2K, Mode 8K, Mode 4K	Mode 4K		enum	
OversamplingOption	Oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	Guard interval (frac FFT size)	1/32		real	[0, 1]
CodeRateHP	High priority stream convolutional code rate: HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8	HP 1/2		enum	
CodeRateLP	Low priority stream convolutional code rate: LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8	LP 1/2		enum	
MappingMode	Signal constellations and mapping: QAM-16, QAM-64	QAM-16		enum	
Alpha	Non-uniform factor for DVB-H	1		int	[1,∞)
InnerInterlv	Inner interleaving type: Native, In-depth	In-depth		enum	
Cell_ID	Cell identifier	0		int	[0, 65535]
TimeSlicing	Time slicing for DVB-H signalling: TimeSlicing Not-used, TimeSlicing Used	TimeSlicing Not- used		enum	
MPE_FEC	MPE-FEC for DVB-H signalling: MPE_FEC Not-used, MPE_FEC used	MPE_FEC Not- used		enum	
TPSLength	TPS length indicator (23 for version 1.2.1, 31 for version 1.5.1, 33 for DVB-H)	33		int	[23, 37]
DataTypeHP	Payload data type with high priority: PN9 HP, PN15 HP, FIX4 HP, _4_1_4_0 HP, _8_1_8_0 HP, _16_1_16_0 HP, _32_1_32_0 HP, _64_1_64_0 HP	PN9 HP		enum	
DataTypeLP	Payload data type with low priority: PN9 LP, PN15 LP, FIX4 LP, _4_1_4_0 LP, _8_1_8_0 LP, _16_1_16_0 LP, _32_1_32_0 LP, _64_1_64_0 LP	PN15 LP		enum	

Pin Outputs

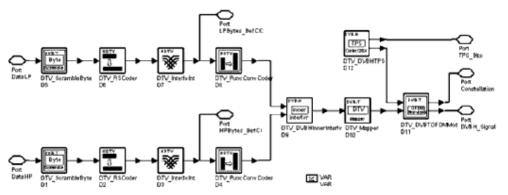

Advanced Design System 2011.01 - DTV Design Library

Pin	Name	Description	Signal Type
1	RF	RF hierarchical signal	timed
2	DVBH_Signal	DVB-H hierarchical base-band signal	complex
3	HPBytes_Uncoded	high priority information bytes of transport packet	int
4	LPBytes_Uncoded	low priority information bytes of transport packet	int
5	HPBytes_BefCC	high priority information bytes before convolutional coder	int
6	LPBytes_BefCC	low priority information bytes before convolutional coder	int
7	TPS_Bits	TPS bits	int
8	Constellation	constellation signal before IFFT	complex

Notes/Equations


1. This subnetwork model integrates an RF modulator and a DVB-H hierarchical baseband signal source. The baseband signal is fed to the RF modulator; after RF modulation the timed signal is output. The schematic for this subnetwork is shown below.

DTV_DVBHHierSignalSrc_RF Schematic


2. The DVB-H signal source format follows the DVB specification. The figure below shows the functional block diagram of the DVB-H baseband system.

DVB-H Baseband System Block Diagram

 The schematic for baseband signal source DTV_DVBHHierSignalSrc is shown below, it includes: scrambler (DTV_ScrambleByte); outer coder (DTV_RSCoder); outer interleaver (DTV_InterlvInt); inner coder (DTV_PuncConvCoder); inner interleaver (DTV_DVBHInnerInterlv); mapper (DTV_Mapper); frame adaptation, OFDM, and guard interval insertion (DTV_DVBTOFDMMod subnetwork); and, TPS generator (DTV_DVBHTPS).

DTV_DVBHHierSignalSrc Schematic

When native inner interleaving is selected, the signal source generates one OFDM symbol each firing.

When in-depth inner interleaving is selected, the signal source generates 1 OFDM symbol in the 8K mode (in-depth inner interleaving does not affect 8K mode), 2 OFDM symbols in the 4K mode, and 4 OFDM symbols in the 2K mode.

Each OFDM symbol, the Constellation pin outputs 1705 (2K mode), 3409 (4K mode), or 6817 (8K mode) particles.

The number of samples of each OFDM symbol (DVBH_signal pin) is:

- (1+GuardInterval)×2048×OversamplingOption (2K mode)
- (1+GuardInterval)×4096×OversamplingOption (4K mode)
- (1+GuardInterval)×8192×OversamplingOption (8K mode)
- 4. Baseband Parameter Details
 - Mode is used to select a 2K, 4K, or 8K transmission mode as defined in DVB-H specification.
 - OversamplingOption specifies the oversampling ratio of the transmission signal. Oversampling ratios 1, 2, 4, 8, 16, 32 are supported in this source. If OversamplingOption = Ratio 2, the IFFT size is 4096 (2K mode), 8192 (4K mode), or 16384 (8K mode).
 - GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction of the FFT time period. Guard interval value of the corresponding receiver must match the guard interval length actually used in the input signal in order for the demodulation to work properly. It takes the value of 1/32, 1/16, 1/8 or 1/4 for DVB-H.
 - CodeRateHP is defined as convolutional code rate for the high priority stream. Code rates 1/2, 2/3, 3/4, 5/6, and 7/8 are available in this source.
 - CodeRateLP is defined as convolutional code rate for the low priority stream. Code rates 1/2, 2/3, 3/4, 5/6, and 7/8 are available in this source.
 - MappingMode specifies signal constellations and mapping: 16- or 64-QAM.
 - Alpha is used for signal constellation and mapping (based on MappingMode).
 - If Alpha=1, uniform mapping of 16- or 64-QAM is used.
 - If Alpha=2 or 4, non-uniform mapping of 16- or 64-QAM is used as defined in DVB-H specification.
 - Cell_ID specifies the cell from which the signal comes from, it should belong to [0, 65535]. If not used, it should be set zero.
 - TPS_Length specifies the number of TPS information bits based on ETSI EN 300744 specification:
 - 23 (when cell identification information is not transmitted, MPE-FEC and

Time Slicing information are not transmitted, DVB-T version 1.2.1).

- 31 (when cell identification information is transmitted, MPE-FEC and Time Slicing information are not transmitted, DVB-T version 1.5.1).
- 33 (when cell identification information is transmitted, MPE-FEC and Time Slicing information are transmitted, DVB-T version 1.5.1).
- For DataTypeHP and DataTypeLP:
 - if PN9 is selected, a 511-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.153
 - if PN15 is selected, a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151
 - if FIX4 is selected, a zero-stream is generated
 - if x_1_x_0 is selected, where x equals 4, 8, 16, 32, or 64, a periodic bit stream is generated, with the period being 2x. In one period, the first x bits are 1s and the second x bits are 0s.
- 5. RF Parameter Details

FCarrier defines the RF frequency for the DVB signal.

Power defines the power level for FCarrier.

BasicSamplingRate indicates the sampling rate of baseband signal, the corresponding bandwidth of the RF signal is:

BasicSamplingRate×1705/2048 (2K mode) BasicSamplingRate×3409/4096 (4K mode) BasicSamplingRate×6817/8192 (8K mode)

The MirrorSpectrum (when set to YES) conjugates the input signal before any other processing is done.

The GainImbalance, PhaseImbalance, I_OriginOffset, Q_OriginOffset, and IQ_Rotation parameters add certain impairments to the ideal output RF signal. Impairments are added in the order described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

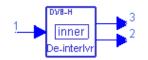
$$V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin\left(\omega_{c}t + \frac{\phi\pi}{180}\right)\right)$$

where A is a scaling factor that depends on the Power and ROut parameters specified by the user, $V_1(t)$ is the in-phase RF envelope, $V_2(t)$ is the quadrature phase RF

envelope, g is the gain imbalance

 $g = 10 \frac{GainImbalance}{20}$

and, Φ (in degrees) is the phase imbalance. The signal V_3 (*t*) is rotated by IQ_Rotation degrees; I_OriginOffset and


Q_OriginOffset are then applied to the rotated signal. Note that the amounts specified are percentages with respect to the output rms voltage. The output rms voltage is given by sqrt(2×ROut×Power).

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

Advanced Design System 2011.01 - DTV Design Library

DTV_DVBHInnerDeinterlv

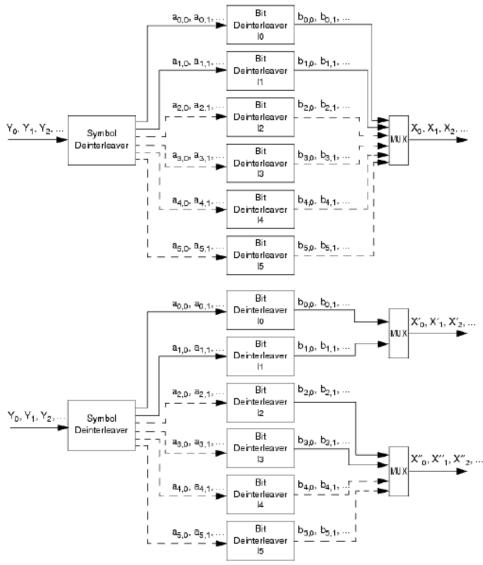
Description: DVB-H inner deinterleaver **Library:** DTV, DVB-H **Class:** SDFDTV_DVBHInnerDeinterlv

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	Transmission mode: DVB 2k mode, DVB 8k mode, DVB 4k mode	DVB 4k mode		enum	
MappingMode	Signal constellation and mapping: QPSK, QAM-16, QAM-64	QPSK		enum	
Hierarchy	Hierarchical transmission flag: Non-Hierarchical, Hierarchical	Non- Hierarchical		enum	
InterlvType	Symbol interleaving type for 2K and 4K mode: Native, In- depth	In-depth		enum	

Pin Inputs

- Pin Name Description Signal Type
- 1 BitsIn bits to be de-interleaved real


Pin Outputs

Pin	Name	Description	Signal Type
2	BitsHP	high priority bit stream (no output in non-hierarchical transmission)	real
3	BitsLP	low priority bit stream or non-hierarchical bit stream	real

Notes/Equations

 This model performs inner de-interleaving functions in DVB-H systems for nonhierarchical and hierarchical transmission. Inner de-interleaver functions (symbol de-interleaving, bit de-interleaving, and multiplexing) are shown below.

DTV_DVBHInnerDeinterlv Functional Block Diagram

Advanced Design System 2011.01 - DTV Design Library

2. Symbol de-interleaving

The symbol de-interleaver de-maps v bit words from the active carriers of every one (all three modes with native inner interleaving), 2 (4K mode with in-depth inner interleaving) or 4 (2K mode with in-depth inner interleaving) consecutive OFDM symbols. The symbol de-interleaver acts on blocks of 1512 (2K mode with native inner interleaving), 3024 (4K mode with native inner interleaving), or 6048 (8K mode, 2K mode with in-depth inner interleaving and 4K mode with in-depth inner interleaving) data symbols.

The input v bit words { yq } is defined as:

$$y_{q} = (y_{0,q}, y_{1,q}, \dots, y_{v-1,q})$$

where v = 2 for QPSK, v = 4 for 16-QAM, and v = 6 for 64-QAM. For native symbol de-interleaving:

In the 2K mode, vector $Y = (y_0, y_1, y_2, ..., y_{1511})$ from one OFDM symbol of v bit words is read into the symbol de-interleaver.

In the 4K mode, vector $Y = (y_0, y_1, y_2, ..., y_{3023})$ is read in.

Advanced Design System 2011.01 - DTV Design Library

In the 8K mode, vector $Y = (y_0, y_1, y_2, ..., y_{6047})$ is read in.

The de-interleaved vector $Y' = (y'_0, y'_1, y'_2, ..., y'_{Nmax-1})$ is defined by: $y'_q = y_{H(q)}$ for even symbols for $q = 0, ..., N_{max} - 1$ $y'_{H(q)} = y_q$ for odd symbols for $q = 0, ..., N_{max} - 1$ where $N_{max} = 1512$ (2K mode), $N_{max} = 3024$ (4K mode), and $N_{max} = 6048$ (8K mode). The symbol index is 0 to 67 in each frame.

For in-depth symbol de-interleaving:

When in-depth inner de-interleaver is selected, the symbol de-interleaver acts on blocks of 6048 data symbols.

In the 2K mode, vector $Y = (y_0, y_1, y_2, ..., y_{6047})$ is read in from four consecutive OFDM symbols. For even vectors these start with symbols 0, 8, 16, 24, etc.; for odd vectors these start with symbols 4, 12, 20, 28, etc. in every super-frame.

In the 4K mode, vector $Y = (y_0, y_1, y_2, ..., y_{6047})$ is read in from two consecutive OFDM symbols. For even vectors these start with symbols 0, 4, 8, 12, etc.; for odd vectors these start with symbols 2, 6, 10, 14, etc. in every super-frame.

The de-interleaved vector $Y' = (y'_0, y'_1, y'_2, ..., y'_{Nmax-1})$ is defined by: $y'_q = y_{H(q)}$ for even vectors for $q = 0, ..., N_{max} - 1$ $y'_{H(q)} = y_q$ for odd vectors for $q = 0, ..., N_{max} - 1$ where $N_{max} = 6048$, for 2K, 4K, or 8K modes.

In the 8K mode, the native and in-depth inner de-interleaving is the same.

The permutation function represented by H(q) is defined by:

An $(N_r - 1)$ bit binary word R'_i is defined, with $N_r = \log 2 M_{max}$, where M_{max} = 2048 when $N_{max} = 1512$, $M_{max} = 8192$ when $N_{max} = 6048$, and $M_{max} = 4096$ when $N_{max} = 3024$, where R'_i takes the following values:

$$\begin{split} &i = 0,1: R'_{i} [N_{r} - 2, N_{r} - 3, ..., 1, 0] = 0, 0, ..., 0, 0 \\ &i = 2: R'_{i} [N_{r} - 2, N_{r} - 3, ..., 1, 0] = 0, 0, ..., 0, 1 \\ &2 < i < M_{max}: \{ R'_{i} [N_{r} - 3, N_{r} - 4, ..., 1, 0] = R'_{i} - 1 [N_{r} - 2, N_{r} - 3, ..., 2, 1]; \\ &if M_{max} = 2048: R'_{i} [N_{r} - 2] = (R'_{i-1} [0] + R'_{i-1} [3]) \mod 2 \\ &if M_{max} = 8192: R'_{i} [N_{r} - 2] = (R'_{i-1} [0] + R'_{i-1} [1] + R'_{i-1} [4] + R'_{i-1} [6]) \\ &\mod 2 \\ &if M_{max} = 4096: R' [N - 2] = (R' [0] + R' [2]) \mod 2 \} \end{split}$$

A vector R_i is derived from the vector R'_i by the bit permutations, that is:

$M_{max} = 2048$	R' _[90]	$= \{ R'_{9'}, R'_{8'}, R'_{7'}, R'_{6'}, R'_{5'}, R'_{4'}, R'_{3'}, R'_{2'}, R'_{1'}, R'_{0} \}$
	R _[90]	$= \{ R'_{2'}, R'_{5'}, R'_{8'}, R'_{3'}, R'_{7'}, R'_{0'}, R'_{1'}, R'_{4'}, R'_{6'}, R'_{9} \}$
		$= \{R_9, R_8, R_7, R_6, R_5, R_4, R_3, R_2, R_1, R_0\}$
M _{max} = 8192	R' _[110]	$= \{ R'_{11'}, R'_{10'}, R'_{9'}, R'_{8'}, R'_{7'}, R'_{6'}, R'_{5'}, R'_{4'}, R'_{3'}, R'_{2'}, R'_{1'}, R'_{0} \}$
	R _[110]	$= \{ R'_{10}, R'_7, R'_4, R'_6, R'_0, R'_5, R'_{11}, R'_2, R'_9, R'_3, R'_1, R'_8 \}$
		$= \{R_{11}, R_{10}, R_9, R_8, R_7, R_6, R_5, R_4, R_3, R_2, R_1, R_0\}$
M _{max} = 4096	R' _[100]	$= \{ R'_{10}, R'_{9}, R'_{8}, R'_{7}, R'_{6}, R'_{5}, R'_{4}, R'_{3}, R'_{2}, R'_{1}, R'_{0} \}$
	R _[100]	$= \{ R'_{9}, R'_{3}, R'_{7}, R'_{10}, R'_{0}, R'_{8}, R'_{4}, R'_{1}, R'_{5}, R'_{6}, R'_{2} \}$
		$= \{ R_{10}, R_9, R_8, R_7, R_6, R_5, R_4, R_3, R_2, R_1, R_0 \}$

Thus we get the permutation function H(q) by the following algorithm: q = 0;

for (i = 0; i <
$$M_{max}$$
; i = i + 1)
{ $H(q) = (i \mod 2) \times 2^{N_r - 1} + \sum_{i=0}^{N_r - 2} R_i(j) \times 2^i$;
if ($H(q) < N_{max}$) $q = q + 1$; }

Similar to y, y' is made up of v bits:

$$y'_{q'} = (y'_{0,q'}, y'_{1,q'}, \dots, y'_{v-1,q'})$$

where *q*' is the symbol number at the output of the symbol de-interleaver. The vector $Y' = (y'_0, y'_1, y'_2, \dots, y'_{Nmax-1})$ are divided into v sub-streams

and fed into the bit de-interleaver.

3. Bit de-interleaving

Each sub-stream from the symbol de-interleaver is processed by a separate bit deinterleaver. There are up to six de-interleavers depending on v, labelled I0 to I5: I0 and I1 are used for QPSK; I0 through I3 are used for 16-QAM; and I0 through I5 are used for 64-QAM.

The block size is the same for each de-interleaver, but the de-interleaving sequence is different in each case. The bit de-interleaving block size is 126 bits.

For each bit de-interleaver, the input bit vector is defined by:

 $A(e) = (a_{e,0}, a_{e,1}, a_{e,2}, \dots, a_{e,125})$

where e ranges from 0 to v-1.

The de-interleaved output vector $B(e) = (b_{e,0}, b_{e,1}, b_{e,2}, \dots, b_{e,125})$ is defined by:

$$b_{e,w} = a_{e,He(w)}$$

where He(w) is a permutation function that is different for each de-interleaver. He(w) is defined as follows for each de-interleaver:

I0:
$$H_0(w) = w$$

I1: $H_1(w) = (w+63) \mod 126$

Advanced Design System 2011.01 - DTV Design Library I2: $H_2(w) = (w+21) \mod 126$ I3: $H_3(w) = (w+84) \mod 126$ I4: $H_4(w) = (w+105) \mod 126$ I5: $H_5(w) = (w+42) \mod 126$

4. Multiplexing

The input, which consists of v sub-streams, is multiplexed into up to two bit streams: in non-hierarchical mode, the v sub-streams are multiplexed into a single output stream; in hierarchical mode, the first two sub-streams are multiplexed into a high-priority stream, and the other v-2 sub-streams are multiplexed into a low-priority stream. This applies to uniform and non-uniform QAM modes. QPSK:

 $b_{0,0}$ maps to x_0 $b_{1,0}$ maps to x_1

16-QAM non-hierarchical transmission:

 $b_{0,0}$ maps to x_0 $b_{2,0}$ maps to x_1 $b_{1,0}$ maps to x_2 $b_{3,0}$ maps to x_3

16-QAM non-hierarchical transmission:

 $b_{0,0}$ maps to x'_0 $b_{1,0}$ maps to x'_1 $b_{2,0}$ maps to x"_0 $b_{3,0}$ maps to x"_1

64-QAM non-hierarchical transmission:

 $b_{0,0}$ maps to x_0 $b_{2,0}$ maps to x_1 $b_{4,0}$ maps to x_2 $b_{1,0}$ maps to x_3 $b_{3,0}$ maps to x_4 $b_{5,0}$ maps to x_5

64-QAM non-hierarchical transmission:

```
b_{0,0} maps to x'<sub>0</sub>
b maps to x'
```

1,0 1 $b_{2,0}$ maps to x"₀ $b_{4,0}$ maps to x"₁ $b_{3,0}$ maps to x"₂ $b_{5,0}$ maps to x"₃

QPSK does not have hierarchical transmission.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBHInnerInterlv

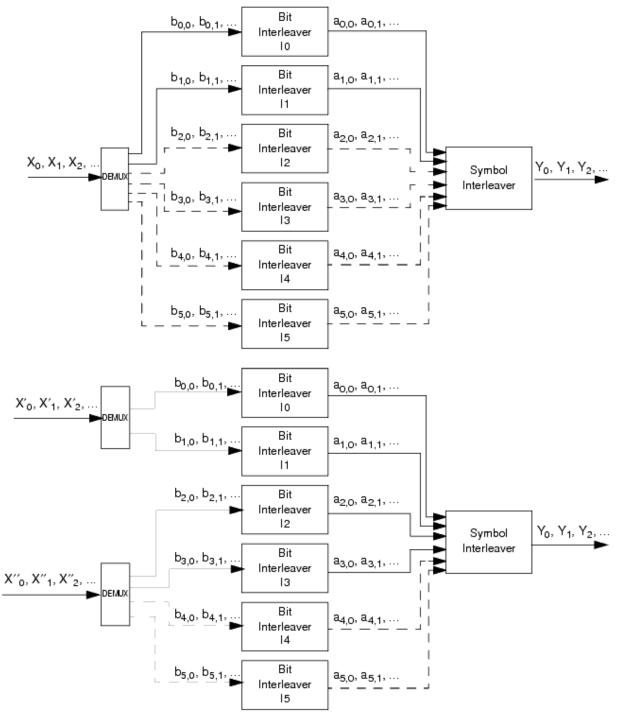
Description: DVB-H inner interleaver **Library:** DTV, DVB-H **Class:** SDFDTV_DVBHInnerInterlv

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	Transmission mode: DVB 2k mode, DVB 8k mode, DVB 4k mode	DVB 4k mode		enum	
MappingMode	Signal constellation and mapping: QPSK, QAM-16, QAM- 64	QPSK		enum	
Hierarchy	Hierarchical transmission flag: Non-Hierarchical, Hierarchical	Non- Hierarchical		enum	
InterlvType	Symbol interleaving type for 2K and 4K mode: Native, In- depth	In-depth		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	BitsHP	high priority bit stream (connection is not needed in non-hierarchical transmission	int
2	BitsLP	low priority bit stream or non-hierarchical bit stream	int


Pin Outputs

Pin	Name	Description	Signal Type
3	BitsOut	inner interleaved bits	int

Notes/Equations

- 1. This model performs inner-interleaving functions in DVB-H systems for nonhierarchical and hierarchical transmission.
- 2. Inner interleaving functions (demultiplexing, bit interleaving, and symbol interleaving) are shown below.

DTV_DVBHInnerInterlv Functional Block Diagram

Advanced Design System 2011.01 - DTV Design Library

3. Demultiplexing

The input, which consists of up to two bit streams, is demultiplexed into v substreams, where v = 2 for QPSK, v = 4 for 16-QAM, and v = 6 for 64-QAM. In nonhierarchical mode, the single input stream is demultiplexed into v sub-streams. In hierarchical mode the high priority stream is demultiplexed into two sub-streams and the low priority stream is demultiplexed into v-2 sub-streams. This applies in both uniform and non-uniform QAM modes. QPSK:

 x_0 maps to $b_{0,0}$ x_1 maps to $b_{1,0}$ 16-QAM non-hierarchical transmission:

 x_0 maps to $b_{0,0}$ x_1 maps to $b_{2,0}$ x_2 maps to $b_{1,0}$ x_3 maps to $b_{3,0}$

16-QAM non-hierarchical transmission:

 x'_0 maps to $b_{0,0}$ x'_1 maps to $b_{1,0}$ x''_0 maps to $b_{2,0}$ x''_1 maps to $b_{3,0}$

64-QAM non-hierarchical transmission:

 x_0 maps to $b_{0,0}$ x_1 maps to $b_{2,0}$ x_2 maps to $b_{4,0}$ x_3 maps to $b_{1,0}$ x_4 maps to $b_{3,0}$ x_5 maps to $b_{5,0}$

64-QAM non-hierarchical transmission:

```
x'_{0} maps to b_{0,0}

x'_{1} maps to b_{1,0}

x''_{0} maps to b_{2,0}

x''_{1} maps to b_{4,0}

x''_{2} maps to b_{3,0}

x''_{3} maps to b_{5,0}
```

4. Bit Interleaving

Each sub-stream from the demultiplexer is processed by a separate bit interleaver. There are therefore up to six interleavers depending on v, labelled I0 to I5: I0 and I1 are used for QPSK; I0 through I3 are used for 16-QAM; I0 through I5 are used for 64-QAM.

Bit interleaving is performed only on the useful data. The block size is the same for each interleaver, but the interleaving sequence is different in each case. The bit interleaving block size is 126 bits.

for each bit interleaver, the input bit vector is defined by: $B(e) = (b_{e, 0}, b_{e, 1}, b_{e, 2}, \dots, b_{e, 125})$ where e ranges from 0 to v-1.

The interleaved output vector $A(e) = (a_{e,0}, a_{e,1}, a_{e,2}, \dots, a_{e,125})$ is defined by:

$$a_{e,w} = b_{e,He(w)}$$

where He(w) is a permutation function that is different for each interleaver and is defined as:

I0: $H_0(w) = w$ I1: $H_1(w) = (w+63) \mod 126$ I2: $H_2(w) = (w+105) \mod 126$ I3: $H_3(w) = (w+42) \mod 126$ I4: $H_4(w) = (w+21) \mod 126$ I5: $H_5(w) = (w+84) \mod 126$

The outputs of the v bit interleavers are grouped to form the digital data symbols, such that each symbol of v bits will consist of exactly one bit from each of the v interleavers. Therefore, the output from the bit-wise interleaver is a v bit word y' that has the output of IO as its most significant bit; that is,

$$y' = (a_{0,w}, a_{1,w}, \dots, a_{v-1,w})$$

- 5. Symbol Interleaving
 - The symbol interleaver maps v bit words onto the active carriers of:
 - one OFDM symbol (all modes with native inner interleaving)
 - two OFDM symbols (4K mode with in-depth inner interleaving)
 - four OFDM symbols (2K mode with in-depth inner interleaving)
 - The symbol interleaver acts on blocks of:
 - 1512 data symbols (2K mode with native inner interleaving)
 - 3024 data symbols (4K mode with native inner interleaving)
 - 6048 data symbols (8K mode, 2K mode with in-depth inner interleaving, 4K mode with in-depth inner interleaving)
 - Native symbol interleaving:
 - In 2K mode, 12 groups of 126 data words from the bit interleaver are read sequentially into a vector $Y' = (y'_0, y'_1, y'_2, \dots, y'_{1511})$.
 - In 4K mode, a vector $Y' = (y'_0, y'_1, y'_2, \dots, y'_{3023})$ is assembled from 24

groups of 126 data words.

• In 8K mode, a vector $Y' = (y'_0, y'_1, y'_2, ..., y'_{6047})$ is assembled from 48

groups of 126 data words.

• The interleaved vector $Y = (y_0, y_1, y_2, \dots, y_{Nmax-1})$ is defined by:

$$y_{H(q)} = y'_q$$
 for even symbols for $q = 0, ..., N_{max} - 1$

 $y_q = y'_{H(q)}$ for odd symbols for $q = 0, ..., N_{max}$ - 1

where N_{max} = 1512 (2K mode), N_{max} = 6048 (8K mode), and N_{max} =

3024 (4K mode). The symbol index is from 0 to 67 in each frame.

In-depth symbol interleaving:

- When in-depth inner interleaver is selected, the symbol interleaver acts on blocks of 6048 data symbols, thus 48 groups of 126 data words from the bit interleaver are read sequentially into a vector $Y' = (y'_0, y'_1, y'_2, ..., y')$
 - ₆₀₄₇).
- The interleaved vector $Y = (y_0, y_1, y_2, \dots, y_{Nmax} 1)$ is defined by:

 $y_{H(q)} = y'_q$ for even interleaved vectors for $q = 0, ..., N_{max} - 1$ $y_q = y'_{H(q)}$ for odd interleaved vectors for $q = 0, ..., N_{max} - 1$ where $N_{max} = 6048$, for mode 2K ,4K, or 8K.

- In the 2K mode, interleaved vectors are mapped onto four consecutive OFDM symbols. For even interleaved vectors these start with symbols 0, 8, 16, 24, etc.; for odd interleaved vectors these start with symbols 4, 12, 20, 28, etc. in every super-frame.
- In the 4K mode, interleaved vectors are mapped onto two consecutive OFDM symbols. For even interleaved vectors these start with symbols 0, 4, 8, 12, etc.; for odd interleaved vectors these start with symbols 2, 6, 10, 14, etc. in every super-frame.
- For 8K mode, the native and in-depth inner de-interleaving is the same.
- The permutation function represented by H(q) is defined by:

$$(N_r - 1)$$
 bit binary word R'_i is defined with $N_r = \log 2 M_{max}$

where

$$M_{max} = 2048$$
 when $N_{max} = 1512$
 $M_{max} = 8192$ when $N_{max} = 6048$
 $M_{max} = 4096$ when $N_{max} = 3024$

where R'_i takes the following values:

$$i = 0,1: R'_{i} [N_{r} - 2, N_{r} - 3, ..., 1, 0] = 0, 0, ..., 0, 0$$

$$i = 2: R'_{i} [N_{r} - 2, N_{r} - 3, ..., 1, 0] = 0, 0, ..., 0, 1$$

$$2 < i < M_{max}: \{R'_{i} [N_{r} - 3, N_{r} - 4, ..., 1, 0] = R'_{i} - 1 [N_{r} - 2, N_{r} - 3, ..., 2, 1]$$

$$if M_{max} = 2048: R'_{i} [N_{r} - 2] = (R'_{i-1} [0] + R'_{i-1} [3]) \mod 2$$

$$if M_{max} = 8192: R'_{i} [N_{r} - 2] = (R'_{i-1} [0] + \frac{1}{2} R'_{i-1} [1] + \frac{1}{2} R'_{i-1} [4] + \frac{1}{2} R'_{i-1}$$

$$[6]) \mod 2$$

$$if M_{max} = 4096: R'_{i} [N_{r} - 2] = (R'_{i-1} [0] + \frac{1}{2} R'_{i-1} [2]) \mod 2$$

• A vector R_i is derived from a vector R'_i by the bit permutations.

Advanced Design System 2011.01 - DTV Design Library

$M_{max} = 2048$	R' _[90]	$= \{ R'_{9'}, R'_{8'}, R'_{7'}, R'_{6'}, R'_{5'}, R'_{4'}, R'_{3'}, R'_{2'}, R'_{1'}, R'_{0} \}$
	R _[90]	$= \{ R'_{2}, R'_{5}, R'_{8}, R'_{3}, R'_{7}, R'_{0}, R'_{1}, R'_{4}, R'_{6}, R'_{9} \}$
		$= \{R_9, R_8, R_7, R_6, R_5, R_4, R_3, R_2, R_1, R_0\}$
M _{max} = 8192	R' _[110]	$= \{ R'_{11'}, R'_{10'}, R'_{9'}, R'_{8'}, R'_{7'}, R'_{6'}, R'_{5'}, R'_{4'}, R'_{3'}, R'_{2'}, R'_{1'}, R'_{0} \}$
	R _[110]	$= \{ R'_{10}, R'_7, R'_4, R'_6, R'_0, R'_5, R'_{11}, R'_2, R'_9, R'_3, R'_1, R'_8 \}$
		$= \{R_{11}, R_{10}, R_9, R_8, R_7, R_6, R_5, R_4, R_3, R_2, R_1, R_0\}$
$M_{max} = 4096$	R' _[100]	$= \{ R'_{10}, R'_{9}, R'_{8'}, R'_{7'}, R'_{6'}, R'_{5'}, R'_{4'}, R'_{3'}, R'_{2'}, R'_{1'}, R'_{0} \}$
	R _[100]	$= \{ R'_9, R'_3, R'_7, R'_{10}, R'_0, R'_8, R'_4, R'_1, R'_5, R'_6, R'_2 \}$
		$= \{R_{10}, R_9, R_8, R_7, R_6, R_5, R_4, R_3, R_2, R_1, R_0\}$

• The permutation function H(q) is determined by the algorithm:

$$\begin{array}{l} q = 0; \\ \text{for } (i = 0; \ \text{i} < M_{max}; \ i = i + 1) \\ \{H(q) = (i \ \text{mod}2) \times 2^{N_r - 1} + \sum_{\substack{N_r - 2 \\ i = 0 \\$$

• Similar to y, y' is made up of v bits: $y'_{q}' = (y'_{0,q'}, y'_{1,q'}, \dots, y'_{v-1,q'})$

where q' is the symbol number at the output of the symbol interleaver. These y values are used to map data into the signal constellation.

6. For non-hierarchical transmission, pin 1 must not be connected.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

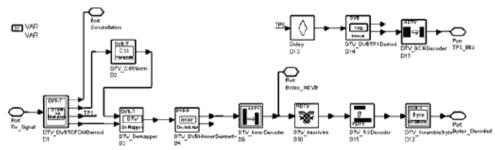
DTV_DVBHReceiver

Description: DVB-H baseband receiver **Library:** DTV, DVB-H **Class:** SDFDTV_DVBHReceiver

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	Transmission mode: Mode 2K, Mode 8K, Mode 4K	Mode 4K		enum	
OversamplingOption	Oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	Guard interval (frac FFT size)	1/32		int	[0, 1]
CodeRate	Convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	Signal constellations and mapping: QPSK, QAM-16, QAM-64	QPSK		enum	
InnerInterlv	Inner interleaving type: Native, In-depth	In- depth		enum	
SoftDecision	Soft decision viterbi decoding type: Soft, Hard, Cochannel	Soft		enum	
TrunLen	Path memory truncation length of viterbi decoding algorithm, in bytes	10		int	[5,∞)

Pin Inputs


Pin	Name	Description	Signal Type
1	Rx_Signal	received OFDM signal to be demodulated	complex

Pin Outputs

Pin	Name	Description	Signal Type
2	Bytes_Decoded	decoded bytes after Reed Solomon decoder	int
3	Bytes_AftVB	decoded bytes after Viterbi decoder	int
4	TPS_Bits	decoded TPS information bits	int
5	Constellation	constellation signal after OFDM demodulation	complex

Notes/Equations

1. This subnetwork model implements a DVB-H baseband receiver function based on the DVB-H Standard. The schematic is shown below.

- 2. Implementation
 - Start of OFDM symbol is detected. In the DTV_DVBTOFDMDemod subnetwork:
 - DTV_MLEstimator calculates the correlation based on guard interval, and DTV_LoadFFTBuff selects the index with the maximum correlation value as the start of FFT.
 - Complex channel impulse response are estimated on continual and scattered pilot subcarriers. The channel impulse responses of data subcarriers are interpolated based on the estimated CIR. This function is implemented by DTV_DVB2DChEstimator.
 - Each subcarrier value is divided by a complex estimated channel response coefficient. This simple one-tap frequency domain channel response compensation is implemented by DTV_OFDMEqualizer.
 - After equalization, DTV_DVBDemuxOFDMSym demultiplexes 1705, 3409, or 6817 subcarriers into 1512 (2K mode), 3024 (4K mode), or 6048 (8K mode) data subcarriers and 1 demodulated TPS.
 - The demodulated data subcarriers (QPSK, 16-QAM or 64-QAM modulated) are demapped by DTV_Demapper.
 - Demodulated soft bits are deinterleaved by DTV_DVBHInnerDeinterlv.
 - De-interleaved bits are inner decoded (DTV_InnerDecoder), outer de-interleaved (DTV_InterlvInt), outer decoded (DTV_RSDecoder), and descrambled (DTV_ScrambleByte).
 - Fully decoded stream bytes are output as Bytes_Decoded; partially decoded stream bytes after inner decoding are output as Bytes_AftVB.
 - The TPS signal is demodulated by DTV_DVBTPSDemod and the demodulated bits are decoded by DTV_BCHDecoder.
 - The output pins of this receiver correspond to those of DTV_DVBHSignalSrc.
 - The number of samples of each OFDM symbol (Rx_Signal input pin) is:
 - (1+GuardInterval)×2048×OversamplingOption for 2K mode
 - (1+GuardInterval)×4096×OversamplingOption for 4K mode
 - (1+GuardInterval)×8192×OversamplingOption for 8K mode
 - The number of Constellation output pin is 1705 (2K mode), 3409 (4K mode), or 6817 (8K mode) per OFDM symbol.
- 3. Parameter Details

Mode is used to select transmission mode of 2K, 4K, or 8K as defined in DVB-H. OversamplingOption specifies the oversampling ratio of the transmission signal. Oversampling ratios 1, 2, 4, 8, 16, 32 are supported in this source. If OversamplingOption = Ratio 2, the IFFT size is 4096 (2K mode), 8192 (4K mode), or 16384 (8K mode).

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction of the FFT time period. Guard interval value of the corresponding receiver must match the guard interval length actually used in the input signal in order for the demodulation to work properly. It takes the value of 1/32, 1/16, 1/8 or 1/4 for DVB-H.

CodeRate is defined as convolutional code rate. Code rates 1/2, 2/3, 3/4, 5/6 and 7/8

are available in this source.

MappingMode specifies signal constellations and mapping: QPSK, 16-QAM or 64-QAM. SoftDecision specifies the Viterbi decoding algorithm mode.

If SoftDecision=Soft, the Viterbi decoding algorithm is a soft decision decoder and uses channel status information.

If SoftDecision=Hard, the Viterbi decoding algorithm is a hard decision decoder and does not use channel status information.

If SoftDecision=Cochannel, the Viterbi decoding algorithm is for co-channel measurement with PAL analog TV and digital DVB-T.

TrunLen sets truncation length (in bytes) in the Viterbi decoding algorithm. The path memory is $8 \times$ TrunLen bits in the Viterbi decoding algorithm.

4. Output Pin Delay Adjustment

There are different delays in different output pins.

The Constellation pin has 8 OFDM symbol delay. The 8 \times 1705 (2K mode), 8 \times 3409 (4K mode) or 8 \times 6817 (8K mode) constellation output signals are not used for EVM calculation.

DTV_BCHDecoder uses a 68-bit block. So a Delay component with N=60 is inserted before DTV_DVBTPSDemod. Pin TPS_Bits has one DVB-H frame (68 OFDM symbols) delay. The first 53 bits at TPS_Bits are not used.

Viterbi decoding introduces different delays for different path memory truncation lengths (TrunLen parameter). For synchronization in BER measurements, the delay between byte-interleaver and byte de-interleaver must be adjusted to a multiple of 12 bytes, the delay between randomizer and de-randomizer must be adjusted to a multiple of 204 bytes; both delays in this model are adjusted to a multiple of 204 bytes.

The information bytes per one OFDM symbol in Bytes_AftVB is calculated as follows:

DataPerOFDMSymbol=1512 (2K mode), 3024 (4K mode), or 6048 (8K mode) CodedBlockSize=204 CR = 1/2, 2/3, 3/4, 5/6 or 7/8 InfoBytes=MapRate×CR×DataPerOFDMSymbol/8 DTV_DelayOFDMSymbols=8

The delay of Bytes_AftVB is Delay_AftVB, calculated as follows:

DelayBytes=DTV_DelayOFDMSymbols× InfoBytes-(int(DelayOFDMSymbols×InfoBytes/CodedBlockSize))×CodedBlockSize, N=int((TrunLen+DelayBytes)/CodedBlockSize) Delay_AftVB=(1+int(DelayOFDMSymbols×InfoBytes/CodedBlockSize)+N) × CodedBlockSize.

N is used to deal with the situation in which sum of TrunLen and DelayBytes is over one block length.

The pin Bytes_Decoded has extra 11 transport MUX packets delays. The delay of Bytes_Decoded is

Delay_AftDescramble = (1+int(DelayOFDMSymbols×InfoBytes/CodedBlockSize)+N+11)×188. 5. When connecting the receiver to the signal source in MER and BER measurements, reference signal from the signal generator should be delayed according to the formula above.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBHReceiver_RF

Description: DVB-H RF receiver **Library:** DTV, DVB-H **Class:** TSDFDTV_DVBHReceiver_RF

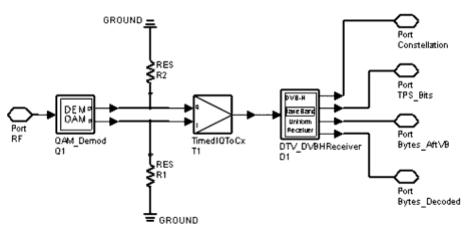
Parameters

Name	Description	Default	Unit	Туре	Range
RIn	Input resistance	DefaultRIn	Ohm	real	(0,∞)
RTemp	Physical temperature, in degrees C	DefaultRTemp	Celsius	real	[-273.15, ∞)
GainImbalance	Gain imbalance, Q vs I	0.0	dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
FCarrier	Carrier frequency	474.0MHz	Hz	real	(0,∞)
Sensitivity	Voltage output sensitivity, Vout/Vin	1		real	(-∞, ∞)
Phase	Reference phase in degrees	0.0	deg	real	(-∞, ∞)
Mode	Transmission mode: Mode 2K, Mode 8K, Mode 4K	Mode 4K		enum	
OversamplingOption	Oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	Guard interval (frac FFT size)	1/32		int	[0, 1]
CodeRate	Convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	Signal constellations and mapping: QPSK, QAM- 16, QAM-64	QPSK		enum	
InnerInterlv	Inner interleaving type: Native, In-depth	In-depth		enum	
SoftDecision	Soft decision viterbi decoding type: Soft, Hard, Cochannel	Soft		enum	
TrunLen	Path memory truncation length of viterbi decoding algorithm, in bytes	10		int	[5, ∞)

Pin Inputs

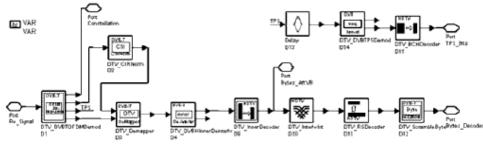
Pin	Name	Description	Signal Type
1	RF	received OFDM signal to be demodulated	timed

Pin Outputs


Pin	Name	Description	Signal Type
2	Bytes_Decoded	decoded bytes after Reed Solomon decoder	int
3	Bytes_AftVB	decoded bytes after Viterbi decoder	int
4	TPS_Bits	decoded TPS information bits	int
5	Constellation	constellation signal after OFDM demodulation	complex

Notes/Equations

1. This subnetwork model implements a DVB-H RF non-hierarchical receiver function. The received RF signal is demodulated and the demodulated signal is fed into baseband receiver.


The schematic for this subnetwork is shown below.

DTV_DVBHReceiver_RF Schematic

2. The schematic for the baseband receiver is shown below.

DTV_DVBHReceiver Schematic

- 3. Receiver functions, implemented according to the DVB-H Standard, are described here.
 - Start of OFDM symbol is detected. In the DTV_DVBTOFDMDemod subnetwork:
 - DTV_MLEstimator calculates the correlation based on guard interval, and DTV_LoadFFTBuff selects the index with the maximum correlation value as the start of FFT.
 - Complex channel impulse response are estimated on continual and scattered pilot subcarriers. The channel impulse responses of data subcarriers are interpolated based on the estimated CIR. This function is implemented by DTV_DVB2DChEstimator.
 - Each subcarrier value is divided by a complex estimated channel response coefficient. This simple one-tap frequency domain channel response compensation is implemented by DTV_OFDMEqualizer.
 - After equalization, DTV_DVBDemuxOFDMSym demultiplexes 1705, 3409,

or 6817 subcarriers into 1512 (2K mode), 3024 (4K mode), or 6048 (8K mode) data subcarriers and 1 demodulated TPS.

- The demodulated data subcarriers (16- or 64-QAM modulated) are demapped by DTV_Demapper.
- The demodulated soft bits are deinterleaved by DTV_DVBHInnerDeinterly.
- De-interleaved bits are inner decoded (DTV_InnerDecoder), outer de-interleaved (DTV_InterlvInt), outer decoded (DTV_RSDecoder), and descrambled (DTV_ScrambleByte).
- Fully decoded stream bytes are output as Bytes_Decoded; partially decoded stream bytes after inner decoding are output as Bytes_AftVB.
- The TPS signal is demodulated by DTV_DVBTPSDemod and the demodulated bits are decoded by DTV_BCHDecoder.
- The output pins of this receiver correspond to DTV_DVBHSignalSrc.
- The number of samples of each OFDM symbol (Rx_Signal input pin) is:
 - $_{\circ}$ (1+GuardInterval)×2048×OversamplingOption for 2K mode
 - \circ (1+GuardInterval)×4096×OversamplingOption for 4K mode
 - (1+GuardInterval)×8192×OversamplingOption for 8K mode
- The number of Constellation output pin is 1705 (2K mode), 3409 (4K mode), or 6817 (8K mode) per OFDM symbol.

4. Parameter Details

GainImbalance and PhaseImbalance add certain impairments to the ideal output RF signal. Impairments are added in the order described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

$$V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin\left(\omega_{c}t + \frac{\phi\pi}{180}\right)\right)$$

where V_1 (t) is the in-phase RF envelope, V_2 (t) is the quadrature phase RF envelope,

g is the gain imbalance

GainImbalance 20

g = 10

and, Φ (in degrees) is the phase imbalance.

FCarrier defines the RF frequency for the DVB signal.

Mode is used to select transmission mode of 2K, 4K, or 8K as defined in DVB-H.

OversamplingOption indicates the oversampling ratio of the transmission signal.

Oversampling ratios 1, 2, 4, 8, 16, 32 are supported in this source. If

OversamplingOption = Ratio 2, the IFFT size is 4096 (2K mode), 8192 (4K mode), or 16384 (8K mode).

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction of the FFT time period. Guard interval value of the corresponding receiver must match the guard interval length actually used in the input signal in order for the demodulation to work properly. It takes the value of 1/32, 1/16, 1/8 or 1/4 for DVB-H.

CodeRate is defined as convolutional code rate. Code rates 1/2, 2/3, 3/4, 5/6, and 7/8 are available in this source.

MappingMode specifies signal constellations and mapping: QPSK, 16-QAM or 64-QAM. SoftDecision specifies the Viterbi decoding algorithm mode.

If SoftDecision=Soft, the Viterbi decoding algorithm is a soft decision decoder and uses channel status information.

If SoftDecision=Hard, the Viterbi decoding algorithm is a hard decision decoder and does not use channel status information.

If SoftDecision=Cochannel, the Viterbi decoding algorithm is for co-channel measurement with PAL analog TV and digital DVB-T.

TrunLen sets truncation length (in bytes) in the Viterbi decoding algorithm. The path memory is 8×TrunLen bits in the Viterbi decoding algorithm.

5. Output Pin Delay Adjustment

There are different delays in different output pins.

The Constellation pin has 8 OFDM symbol delay. The 8 \times 1705 (2K mode), 8 \times 3409 (4K mode) or 8 \times 6817 (8K mode) constellation output signals are not used for EVM calculation.

DTV_BCHDecoder uses a 68-bit block. So a Delay component with N=60 is inserted before DTV_DVBTPSDemod. Pin TPS_Bits has one DVB-H frame (68 OFDM symbols) delay. The first 53 bits at TPS_Bits are not used.

Viterbi decoding introduces different delay for different path memory truncation length (TrunLen parameter). For synchronization in BER measurements, the delay between byte-interleaver and byte de-interleaver must be adjusted to a multiple of 12 bytes, the delay between randomizer and de-randomizer must be adjusted to a multiple of 204 bytes; both delays in this model are adjusted to a multiple of 204 bytes.

The information bytes per one OFDM symbol in Bytes_AftVB is calculated as follows:

DataPerOFDMSymbol=1512 (2K mode), 3024 (4K mode), or 6048 (8K mode) CodedBlockSize=204 CR = 1/2, 2/3, 3/4, 5/6 or 7/8, InfoBytes=MapRate×CR×DataPerOFDMSymbol/8 DTV DelayOFDMSymbols=8

The delay of Bytes_AftVB is Delay_AftVB, calculated as follows:

DelayBytes=DTV_DelayOFDMSymbols× InfoBytes-(int(DelayOFDMSymbols×InfoBytes/CodedBlockSize))×CodedBlockSize, N=int((TrunLen+DelayBytes)/CodedBlockSize), Delay_AftVB=(1+int(DelayOFDMSymbols× InfoBytes/CodedBlockSize)+N) × CodedBlockSize.

N is used to deal with the situation in which sum of TrunLen and DelayBytes is over one block length.

The pin Bytes_Decoded has extra 11 transport MUX packets delays. The delay of Bytes_Decoded is

Delay_AftDescramble =

(1+int(DelayOFDMSymbols×InfoBytes/CodedBlockSize)+N+11)×188.

6. When connecting the receiver to the signal source in MER and BER measurements, reference signal from the signal generator should be delayed according to the formula above.

References

1. ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and

Advanced Design System 2011.01 - DTV Design Library modulation for digital terrestrial television. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBHSignalSrc

Description: DVB-H base-band non-hierarchical signal source **Library:** DTV, DVB-H **Class:** SDFDTV_DVBHSignalSrc

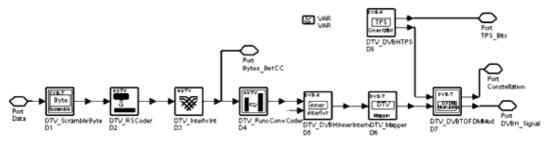
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	Transmission mode: Mode 2K, Mode 8K, Mode 4K	Mode 4K		enum	
OversamplingOption	Oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	Guard interval (frac FFT size)	1/32		real	[0, 1]
CodeRate	Convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	Signal constellations and mapping: QPSK, QAM- 16, QAM-64	QPSK		enum	
InnerInterlv	Inner interleaving type: Native, In-depth	In-depth		enum	
Cell_ID	Cell identifier	0		int	[0, 65535]
TimeSlicing	Time slicing for DVB-H signalling: TimeSlicing Not-used, TimeSlicing Used	TimeSlicing Not- used		enum	
MPE_FEC	MPE-FEC for DVB-H signalling: MPE_FEC Not- used, MPE_FEC used	MPE_FEC Not- used		enum	
TPSLength	TPS length indicator (23 for version 1.2.1, 31 for version 1.5.1, 33 for DVB-H)	33		int	[23, 37]

Pin Inputs

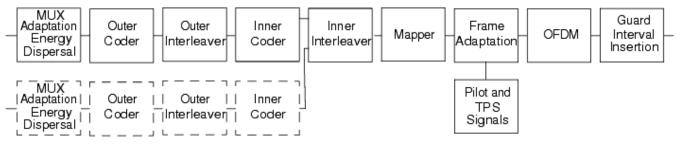
Pin Name Description		Signal Type	
1	Data	Data input in byte	int

Pin Outputs


Pin	Name	Description	Signal Type
2	DVBH_Signal	DVBH base-band hierarchical signal	complex
3	Bytes_BefCC	bytes before convolutional encoder	int
4	TPS_Bits	TPS information bits	int
5	Constellation	constellation signal before IFFT	complex

Notes/Equations

1. This subnetwork model generates a DVB-H non-hierarchical baseband signal. The


Advanced Design System 2011.01 - DTV Design Library schematic for this subnetwork, shown below, includes: scrambler (DTV_ScrambleByte); outer coder (DTV_RSCoder); outer interleaver (DTV_InterlvInt); inner coder (DTV_PuncConvCoder); inner interleaver (DTV_DVBHInnerInterlv); mapper (DTV_Mapper); frame adaptation, OFDM, and guard interval insertion (DTV_DVBTOFDMMod subnetwork); and, TPS generator (DTV_DVBHTPS).

DTV_DVBHSignalSrc Schematic

2. The DVB-H signal source format follows the DVB specification. The figure below shows the functional block diagram of the DVB-H baseband system.

DVB-H Baseband System Block Diagram

When native inner interleaving is selected, the signal source generates one OFDM symbol each firing.

When in-depth inner interleaving is selected, the signal source generates 1 OFDM symbol in the 8K mode (that means in-depth inner interleaving does not affect 8K mode), 2 OFDM symbols in the 4K mode, and 4 OFDM symbols in the 2K mode. Each OFDM symbol, the Constellation pin exports 1705 (2K mode), 3409 (4K mode), or 6817 (8K mode) particles.

The number of samples of each OFDM symbol (DVBH_Signal pin) is:

- (1+GuardInterval)×2048×OversamplingOption for 2K mode
- (1+GuardInterval)×4096×OversamplingOption for 4K mode
- (1+GuardInterval)×8192×OversamplingOption for 8K mode
- 3. Input of the subnetwork is transport stream (TS) defined in MPEG-2 Systems.
- 4. Parameter Details

Mode specifies a 2K, 4K or 8K transmission mode as defined in DVB-H specification. OversamplingOption specifies the oversampling ratio of the transmission signal. Oversampling ratios 1, 2, 4, 8, 16, 32 are supported in this source. If OversamplingOption = Ratio 2, the IFFT size is 4096 (2K mode), 8192 (4K mode), or 16384 (8K mode).

GuardInterval specifies the guard interval (also called cyclic extension) length for

each symbol, as a fraction of the FFT time period. Guard interval value of the corresponding receiver must match the guard interval length actually used in the input signal in order for the demodulation to work properly. It takes the value of 1/32, 1/16, 1/8 or 1/4 for DVB-H.

CodeRate is defined as convolutional code rate. Code rates 1/2, 2/3, 3/4, 5/6 and 7/8 are available in this source.

MappingMode specifies signal constellations and mapping: QPSK, 16-QAM or 64-QAM. Cell_ID specifies the cell from which the signal comes from, it should belong to [0, 65535]. If not used, it should be set zero.

TPS_Length specifies the number of TPS information bits based on ETSI EN 300744 specification:

23 (when cell identification information is not transmitted, MPE-FEC and Time Slicing information are not transmitted, DVB-T version 1.2.1).

31 (when cell identification information is transmitted, MPE-FEC and Time Slicing information are not transmitted, DVB-T version 1.5.1).

33 (when cell identification information is transmitted, MPE-FEC and Time Slicing information are transmitted, DVB-T version 1.5.1).

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBHSignalSrc_RF

DV8-H	
	5 5
RF	4
	3
Source	2
Source	1

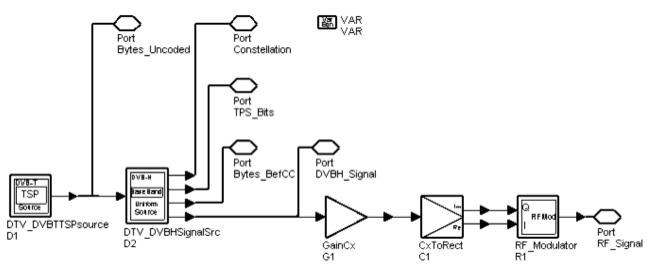
Description: DVB-H RF signal source **Library:** DTV, DVB-H **Class:** TSDFDTV_DVBHSignalSrc_RF

Parameters

Advanced Design System	2011.01 - DTV	Design Library

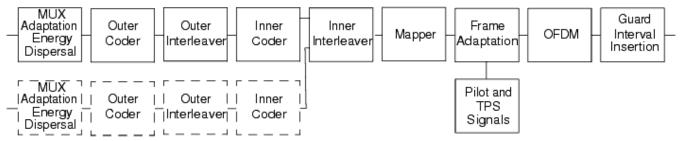
Name	Description	Default	Unit	Туре	Range
ROut	Output resistance	DefaultROut	Ohm	real	(0,∞)
RTemp	Physical temperature, in degrees C	DefaultRTemp	Celsius	real	[-273.15, ∞)
FCarrier	Carrier frequency	474.0MHz	Hz	real	(0,∞)
Power	Modulator output power	40mW	W	real	(0,∞)
BasicSamplingRate	Basic sampling rate	(2048/224.0)MHz	Hz	real	(0,∞)
MirrorSpectrum	Mirror spectrum about carrier?: NO, YES	NO		enum	
GainImbalance	Gain imbalance, Q vs I	0.0	dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
I_OriginOffset	I origin offset (percent)	0.0		real	(-∞, ∞)
Q_OriginOffset	Q origin offset (percent)	0.0		real	(-∞, ∞)
IQ_Rotation	IQ rotation	0.0	deg	real	(-∞, ∞)
Mode	Transmission mode: Mode 2K, Mode 8K, Mode 4K	Mode 4K		enum	
OversamplingOption	Oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	Guard interval (frac FFT size)	1/32		real	[0, 1]
CodeRate	Convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	Signal constellations and mapping: QPSK, QAM-16, QAM-64	QPSK		enum	
InnerInterlv	Inner interleaving type: Native, In-depth	In-depth		enum	
Cell_ID	Cell identifier	0		int	[0, 65535]
TimeSlicing	Time slicing for DVB-H signalling: TimeSlicing Not-used, TimeSlicing Used	TimeSlicing Not- used		enum	
MPE_FEC	MPE-FEC for DVB-H signalling: MPE_FEC Not-used, MPE_FEC used	MPE_FEC Not-used		enum	
TPSLength	TPS length indicator (23 for version 1.2.1, 31 for version 1.5.1, 33 for DVB-H)	33		int	[23, 37]
DataType	Payload data type: PN9, PN15, FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0, _32_1_32_0, _64_1_64_0	PN9		enum	

Pin Outputs


Pin	Name	Description	Signal Type
1	RF	RF signal	timed
2	DVBH_Signal	DVB-H base-band signal	complex
3	Bytes_Uncoded	information bytes of transport packet	int
4	Bytes_BefCC	information bytes before convolutional coder	int
5	TPS_Bits	TPS bits	int
6	Constellation	constellation signal before IFFT	complex

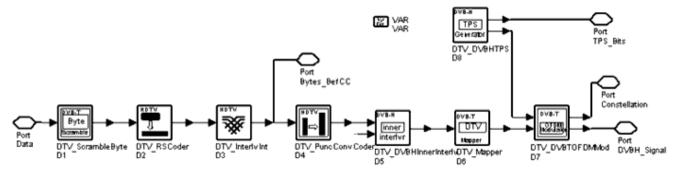
Notes/Equations

1. This subnetwork model integrates an RF modulator and a DVB-H non-hierarchical baseband signal source. The schematic for this subnetwork is shown below. The baseband signal is fed to the RF modulator; after RF modulation the timed signal is


exported.

DTV_DVBHSignalSrc_RF Schematic

2. The DVB-H signal source format follows the DVB specification. The figure below shows the functional block diagram of the DVB-H baseband system.


DVB-H Baseband System Block Diagram

 The schematic for baseband signal source DTV_DVBHSignalSrc is shown below; it includes: scrambler (DTV_ScrambleByte); outer coder (DTV_RSCoder); outer interleaver (DTV_InterlvInt); inner coder (DTV_PuncConvCoder); inner interleaver (DTV_DVBHInnerInterlv); mapper (DTV_Mapper); frame adaptation, OFDM, and guard interval insertion (DTV_DVBTOFDMMod subnetwork); and, TPS generator (DTV_DVBHTPS).

DTV_DVBHSignalSrc Schematic

Advanced Design System 2011.01 - DTV Design Library

When native inner interleaving is selected, the signal source generates one OFDM symbol each firing.

When in-depth inner interleaving is selected, the signal source generates 1 OFDM symbol in the 8K mode (that means in-depth inner interleaving does not affect 8K mode), 2 OFDM symbols in the 4K mode, and 4 OFDM symbols in the 2K mode. Each OFDM symbol, the *Constellation* pin outputs 1705 (2K mode), 3409 (4K mode), or 6817 (8K mode) particles.

The number of samples of each OFDM symbol (DVBH_signal pin) is:

- (1+GuardInterval)×2048×OversamplingOption for 2K mode
- (1+GuardInterval)×4096×OversamplingOption for 4K mode
- (1+GuardInterval)×8192×OversamplingOption for 8K mode
- 4. Baseband Parameter Details

Mode specifies a 2K, 4K, or 8K transmission mode as defined in DVB-H specification. *OversamplingOption* specifies the oversampling ratio of the transmission signal. Oversampling ratios 1, 2, 4, 8, 16, 32 are supported in this source. If OversamplingOption = Ratio 2, the IFFT size is 4096 (2K mode), 8192 (4K mode), or 16384 (8K mode).

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction of the FFT time period. Guard interval value of the corresponding receiver must match the guard interval length actually used in the input signal in order for the demodulation to work properly. It takes the value of 1/32, 1/16, 1/8 or 1/4 for DVB-H.

CodeRate is defined as convolutional code rate. Code rates 1/2, 2/3, 3/4, 5/6 and 7/8 are available in this source.

MappingMode specifies signal constellations and mapping: QPSK, 16-QAM or 64-QAM. *Cell_ID* specifies the cell from which the signal comes from, it should belong to [0, 65535]. If not used, it should be set zero.

TPS_Length specifies the number of TPS information bits based on ETSI EN 300744 specification:

23 (when cell identification information is not transmitted, MPE-FEC and Time Slicing information are not transmitted, DVB-T version 1.2.1).

31 (when cell identification information is transmitted, MPE-FEC and Time Slicing information are not transmitted, DVB-T version 1.5.1).

33 (when cell identification information is transmitted, MPE-FEC and Time Slicing information are transmitted, DVB-T version 1.5.1).

For the *DataType* parameter:

• if PN9 is selected, a 511-bit pseudo-random test pattern is generated according

to CCITT Recommendation 0.153

- if PN15 is selected, a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151
- if FIX4 is selected, a zero-stream is generated
- if x_1_x_0 is selected, where x equals 4, 8, 16, 32, or 64, a periodic bit stream is generated, with the period being 2x. In one period, the first x bits are 1s and the second x bits are 0s.

5. RF parameter details

FCarrier defines the RF frequency for the DVB signal.

Power defines the power level for FCarrier.

BasicSamplingRate indicates the sampling rate of baseband signal, the corresponding bandwidth of the RF signal is: BasicSamplingRate×1705/2048 (2K mode),

BasicSamplingRate×3409/4096 (4K mode), or BasicSamplingRate×6817/8192 (8K mode).

The MirrorSpectrum (when set to YES) conjugates the input signal before any other processing is done.

The GainImbalance, PhaseImbalance, I_OriginOffset, Q_OriginOffset, and IQ_Rotation parameters add certain impairments to the ideal output RF signal. Impairments are added in the order described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

$$V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin(\omega_{c}t + \frac{\phi\pi}{180})\right)$$

where A is a scaling factor that depends on the Power and ROut parameters specified by the user, $V_1(t)$ is the in-phase RF envelope, $V_2(t)$ is the quadrature phase RF

envelope, g is the gain imbalance $g = 10^{\frac{GainImbalance}{20}}$

and, Φ (in degrees) is the phase imbalance. The signal V_3 (*t*) is rotated by IQ_Rotation degrees; I_OriginOffset and

Q_OriginOffset are then applied to the rotated signal. Note that the amounts specified are percentages with respect to the output rms voltage. The output rms voltage is given by sqrt(2×ROut×Power).

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBHTPS

Description: Modulated transmission parameter signal information **Library:** DTV, DVB-H **Class:** SDFDTV_DVBHTPS

Parameters

Name	Description	Default	Unit	Туре	Range
LengthIndicator	TPS length indicator (23 for version 1.2.1, 31 for version 1.5.1, 33 for DVB-H, 6 bits)	33		int	[23, 37]
Constellation	Modulation scheme in DVB-H (2 bits): QPSK, QAM-16, QAM-64, Reserved Con	QPSK		enum	
InnerInterlv	Inner interleave type (1 bit): Native, In-depth	In-depth		enum	
Hierarchy	Signalling format for alpha values (2 bits): Non- hierarchical, Alpha 1, Alpha 2, Alpha 4	Non- hierarchical		enum	
CodeRateHP	High priority stream current convolutional code rate (3 bits): HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8, Reserved C1 HP, Reserved C2 HP, Reserved C3 HP	HP 1/2		enum	
CodeRateLP	Low priority stream current convolutional code rate (3 bits): LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8, Reserved C1 LP, Reserved C2 LP, Reserved C3 LP	LP 1/2		enum	
GuardInterval	Guard interval (frac FFT size, 2 bits): G 1/32, G 1/16, G 1/8, G 1/4	G 1/32		enum	
Mode	Transmission mode (2 bits): DVB 2k mode, DVB 8k mode, DVB 4k mode, Reserved M	DVB 4k mode		enum	
Cell_ID	Cell identifier (between 0 and 65535, 8 bits x2)	0		int	[0, 65535]
TimeSlicing	Time slicing for DVB-H signalling (1 bit): TimeSlicing Not-used, TimeSlicing Used	TimeSlicing Not-used		enum	
MPE_FEC	MPE-FEC for DVB-H signalling (1 bit): MPE_FEC Not- used, MPE_FEC used	MPE_FEC Not- used		enum	
FutureUse	reserved for future use (by default, all 4 bits are set to 0)	0000		int array	
TPS_BitsOption	Select output type for pin TPS_Bits: Info 53Bits, Info 54Bits, Info 53 and Parity 14, Info 54 and Parity 14	Info 53Bits		enum	

Pin Outputs

Pin	Name	Description	Signal Type
1	TPS	TPS after BPSK modulation (68 particles per frame)	complex
2	TPS_Bits	TPS information bits	int

Notes/Equations

Advanced Design System 2011.01 - DTV Design Library

- 1. This model generates modulated transmission parameter signaling information used in TPS carriers in DVB-H OFDM symbols.
- 2. The TPS is defined over 68 consecutive OFDM symbols (referred to as one OFDM frame). Four consecutive frames correspond to one OFDM super-frame. The reference sequence corresponding to the TPS carriers of the first symbol of each OFDM frame is used to initialize the TPS modulation on each TPS carrier. Each OFDM symbol conveys one TPS bit. Each TPS block (corresponding to one OFDM frame) contains 68 bits, defined as:
 - 1 initialization bit
 - 16 synchronization bits
 - 37 information bits

Only 33 of the 37 information bits are used, the remaining 4 bits are reserved for future use and are set to 0 by default.

- 14 redundancy bits for error protection
- 3. TPS data generated is described here.

The 53 original information bits (16 synchronization bits and 37 information bits) are appended 14 parity bits by BCH (67, 53, t=2) coder; therefore, a 67-bit sequence generated.

The 67-bit sequence is then DBPSK modulated with an initialization bit 0. Each firing, 53 (see Parameter details section) original binary data is exported through the TPS_Bits pin, and the initialization bit 0 with the corresponding 67 DBPSK modulated bits are exported through the TPS pin (modulated data is converted to non-return-to-zero data before export, i.e. 0 to 1 and 1 to -1).

4. TPS bit assignments are listed in the table below.

TPS Signalling Information and Format

Bit Number	Format	Purpose/Content
<i>S</i> 0	0	Initialization bit for differential BPSK modulation
$S_1 - S_{16}$	0011010111101110 or 1100101000010001	Synchronization word (even frame and odd frame)
S ₁₇ – S ₂₂	See TPS Length Indicator	Length indicator (starting from and including bit s17)
$S_{23} - S_{24}$	See Signalling Format for Frame Number	Frame number
S ₂₅ – S ₂₆	See Signalling Format for the Possible Constellation Patterns	Constellation
S ₂₇	See Signal Format for Inner Interleaving and Values	Inner interleaving information
S ₂₈ – S ₂₉	See Signal Format for Inner Interleaving and Values	Hierarchy information
$S_{30} - S_{32}$	See Signal Format for Each Code Rate	Code rate, HP stream
S ₃₃ – S ₃₅	See Signal Format for Each Code Rate	Code rate, LP stream
S ₃₆ – S ₃₇	See Signal Format for Each Guard Interval	Guard interval
S ₃₈ – S ₃₉	See Signal Format for Transmission Mode	Transmission mode
$S_{40} - S_{47}$	See Mapping of cell_id on TPS Bits	Cell identifier
S ₄₈ - S ₄₉	See DVB-H Service Indication	DVB-H service indication
S ₅₀ – S ₅₃	all set to 0 by default	Reserved for future use
S ₅₄ – S ₆₆	BCH code	Error protection

TPS Length Indicator

Bits S ₁₇ - S TPS Length Indicator	
22	
010111	when Cell Identification information is not transmitted (23 TPS bits in use)
011111	when Cell Identification information is transmitted (31 TPS bits in use)
100001	when Cell identification and DVB-H signalling (MPE-FEC and Time Slicing information) is transmitted (33 TPS bits in use)

Signalling Format for Frame Number

Bits S ₂₃ - S ₂₄	Frame Number	
00	Frame number 1 in the super-frame	
01	Frame number 2 in the super-frame	
10	Frame number 3 in the super-frame	
11	Frame number 4 in the super-frame	

Advanced Design System 2011.01 - DTV Design Library Signalling Format for the Possible Constellation Patterns

Bits S ₂₅ - S ₂₆	Constellation Characteristics	
00	QPSK	
01	16-QAM	
10	64-QAM	
11	reserved	

Signal Format for Inner Interleaving and a Values

Bits S ₂₇ - S ₂₉	In-depth Interleaver Information	a Value
0xx	native interleaver	
1xx	in-depth interleaver	
x00		Non-hierarchical
x01		a = 1
x10		a = 2
x11		a = 3
NOTE: "x" means whatever bit state.		

Signal Format for Each Code Rate

Bits, S ₃₀ - S ₃₂ HP Stream, S ₃₃ - S ₃₅ LP Stream	Code Rate
000	1/2
001	2/3
010	3/4
011	5/6
100	7/8
101	reserved
110	reserved
111	reserved

Signal Format for Each Guard Interval

Bits S ₃₆ - S ₃₇	Guard Interval Values
00	1/32
01	1/16
10	1/8
11	1/4

Bits S ₃₈ - S ₃₉	Transmission Mode		
00	2K mode		
01	8K mode		
10	4K mode		
11	reserved		

Mapping of cell_id on TPS Bits

TPS Bit Number	Frame Number 1 or 3	Frame Number 2 or 4
S ₄₀	cell_id b ₁₅	cell_id b ₇
S ₄₁	cell_id b ₁₄	cell_id b ₆
S ₄₂	cell_id b ₁₃	cell_id b ₅
S ₄₃	cell_id b ₁₂	cell_id b ₄
S ₄₄	cell_id b ₁₁	cell_id b ₃
S ₄₅	cell_id b ₁₀	cell_id b ₂
S ₄₆	cell_id b ₉	cell_id b ₁
S ₄₇	cell_id b ₈	cell_id b ₀

DVB-H Service Indication

S ₄₈	S ₄₈ S ₄₉ Transmission Mode				
0	x	Time Slicing is not used			
1	x	At least one elementary stream uses Time Slicing			
x	0	MPE-FEC not used			
x	1	At least one elementary stream uses MPE-FEC			
x =	x = any bit state				

5. Error Protection of TPS

The 53 bits containing TPS synchronization and information (bits $s_1 - s_{53}$) are

extended with 14 parity bits of the BCH (67, 53, t=2) shortened code, derived from the original systematic BCH (127, 113, t=2) code. The code generator polynomial is:

$$h(x) = x^{14} + x^9 + x^8 + x^6 + x^5 + x^4 + x^2 + x + 1$$

The shortened BCH code is implemented by adding 60 bits (all set to 0) before the information bits input of a BCH (127, 113, t=2) encoder. After BCH encoding these null bits are discarded, leaving a BCH code word of 67 bits.

6. TPS Modulation

• TPS cells are transmitted at the *normal* power level, that is, they are transmitted with energy equal to that of the mean of all data cells, $E[c \times c^*] = 1$.

- Each TPS carrier is DBPSK modulated and conveys the same message. The DBPSK is initialized at the beginning of each TPS block.
- The following rule applies for the differential modulation of carrier k of symbol I (I > 0) in frame m:

• if
$$s_1 = 0$$
, then
 $Re\{c_{m,l,k}\} = Re\{c_{m,l-1,k}\}$, $Im\{c_{m,l,k}\} = 0$
• if $s_1 = 1$, then
 $Re\{c_{m,l,k}\} = -Re\{c_{m,l-1,k}\}$, $Im\{c_{m,l,k}\} = 0$

• Absolute modulation of TPS carriers in the first symbol in a frame is derived from the reference sequence w_k as follows:

$$Re\{c_{m,l,k}\} = 2\left(\frac{1}{2} - w_k\right)$$
$$Im\{c_{m,l,k}\} = 0$$

7. Parameter Details

TPS_Length indicates the number of TPS information bits based on ETSI EN 300744 specification:

23 (when cell identification information is not transmitted, MPE-FEC and Time Slicing information are not transmitted, DVB-T version 1.2.1).

31 (when cell identification information is transmitted, MPE-FEC and Time Slicing information are not transmitted, DVB-T version 1.5.1).

33 (when cell identification information is transmitted, MPE-FEC and Time Slicing information are transmitted, DVB-T version 1.5.1).

TPS_BitsOption is used for the output type selection of pin *TPS_Bits*. "Info_53bits" means this pin will export s_1 ' s_{53} , "Info 54bits" export s_0 ' s_{53} , "Info 53 and Parity 14"

export s_1 ' s_{67} , and "Info 54 and Parity 14" export s_0 ' s_{67} .

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DVB-T Components

- DTV CIRNorm (dtv)
- DTV DVB2DChEstimator (dtv)
- DTV DVBBitBlockInterlv (dtv)
- DTV DVBChannel (dtv)
- DTV DVBChEstimator (dtv)
- DTV DVBDemuxOFDMSym (dtv)
- DTV DVBLoadIFFTBuff (dtv)
- DTV DVBMuxOFDMSym (dtv)
- DTV DVBSymDeinterlv2b (dtv)
- DTV DVBSymDeinterlv4b (dtv)
- DTV DVBSymDeinterlv6b (dtv)
- DTV DVBSymInterlv2b (dtv)
- DTV DVBSymInterlv4b (dtv)
- DTV DVBSymInterlv6b (dtv)
- DTV DVBSymInterlvCx (dtv)
- DTV DVBTHierInnerDeInterlv (dtv)
- DTV DVBTHierInnerInterlv (dtv)
- DTV DVBTHierReceiver (dtv)
- DTV DVBTHierReceiver RF (dtv)
- DTV DVBTHierSignalSrc (dtv)
- DTV DVBTHierSignalSrc RF (dtv)
- DTV DVBTImpulseNoise (dtv)
- DTV DVBTInnerDeInterlv (dtv)
- DTV DVBTInnerInterlv (dtv)
- DTV DVBTOFDMDemod (dtv)
- DTV DVBTOFDMMod (dtv)
- DTV DVBTPS (dtv)
- DTV DVBTPSDemod (dtv)
- DTV DVBTPSMod (dtv)
- DTV DVBTReceiver (dtv)
- DTV DVBTReceiver RF (dtv)
- DTV DVBTSignalSrc (dtv)
- DTV DVBTSignalSrc RF (dtv)
- DTV DVBTTPSGen (dtv)
- DTV DVBTTSPsource (dtv)
- DTV PALSource (dtv)

DTV_CIRNorm

Description: Soft output for soft decision decoder **Library:** DTV, DVB-T **Class:** SDFDTV CIRNorm

Parameters

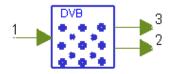
Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: DVB 2k mode, DVB 8k mode, DVB 4k mode	DVB 2k mode		enum	
SoftDecision	soft decision viterbi decoding type: Soft, Hard, Cochannel	Soft		enum	

Pin Inputs

Pin	Name	Description	Signal Type			
1	input	channel coefficient in active subcarriers	complex			
Pin	Pin Outputs					

Pin	Name	Description	Signal Type
2	output	channel status information	real

Notes/Equations


- 1. This model outputs soft information for a soft decision decoder. The input signal is the channel coefficient in active subcarriers (= H(i)).
 - When SoftDecision=Hard, the output signal is 1.0 in all active subcarriers.
 - When SoftDecision=Soft, the output signal is CSI (= $|H(i)|^2 / Max (|H(i)|^2)$) which is limited to [0, 1].
 - When SoftDecision=Cochannel, the 1.0 output in the subcarrier signal is slightly affected by the PAL co-channel analog signal; 0.0 in other subcarriers is severely affected by the PAL co-channel analog signal. The PAL analog signal bandwidth is 8 MHz.

Each firing, 1512 (2K mode), 3024 (4K mode), or 6048 (8K mode) tokens are produced.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVB2DChEstimator

Description: Channel estimator and two-dimension channel interpolator for DVB-T **Library:** DTV, DVB-T **Class:** SDFDTV_DVB2DChEstimator

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one OFDM symbol	1705		int	1705 for 2k mode, 6817 for 8k mode, 3409 for 4k mode
Order	FFT points=2^Order	11		int	(0, ∞)†
SPperiod	distance in carriers between nearby scattered pilots	12		int	[0,∞) ^{††}
SPstart	start position of scattered pilots in carriers	0		int	[0, ∞) ^{††}
SPoffset	offset value of scattered pilots in each symbol	3		int	[0, ∞) ^{††}
SPphase	initial phase of scattered pilots	0		int	[0, SPperiod/ SPoffset- 1]
GuardInterva	guard interval (fractional FFT size)	1/4		real	[0, 1]

[†] Order is the order of FFT; it must satisfy $2^{\text{Order} \ge \text{Carriers}}$ ^{††} In DVB-T systems: SPperiod=12, SPstart=0, SPoffset=3

Pin Inputs

Pir	n Name	Description	Signal Type
1	input	output signals from FFT	complex
Pin		S	

Pin	Name	Description	Signal Type
2	output	signals in active subcarriers	complex
3	Coef	channel coefficient in active subcarriers	complex

Notes/Equations

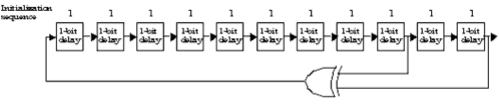
- 1. This model provides linear channel estimation and 2D channel interpolation using collected scattered pilots; data from the active subcarriers is output.
- The number of IntState of Length determines the number of CP (continual pilot) and TPS in each symbol; the position of CP and TPS are determined according to <u>Carrier</u> <u>Indices for Continual Pilot Carriers</u> and <u>Carrier Indices for TPS Carriers</u>, respectively. PRBS sequences in each segment are generated according to <u>Generation of PRBS</u> <u>Sequence</u>; the initial sets of PRBS register is 11111111111. The PRBS is initialized so

that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on every used carrier in each segment (whether or not it is a pilot).

Positions of the corresponding scattered pilots are generated as follows. For the symbol of index *l* (ranging from 0 to 67), carriers for which index *k* belongs to subset $\{k = K_{min} + 3 \times l \mod 4 + 12p \mid p \text{ integer}, p \ge 0, k \in [K_{min}, K_{max}]\}$

are scattered pilot positions.

where p is an integer that takes all possible values ≥ 0 , provided the resulting value for k does not exceed the valid range [K_{min} , K_{max}]; K_{min} = 0, and K_{max} = 1704 (2K mode), K_{max} = 3408 (4K mode), or 6816 (8K mode). SPperiod, SPstart, SPoffset and SPphase parameters control the scattered pilots positions.


Carrier Indices for Continual Pilot Carriers

Continual pilot	Continual pilot carrier positions (index number k)				
2K mode	4K mode	8K mode			
2K mode 0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377	4K mode 0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377 1491 1683 1704 1752 1758 1791 1845 1860 1896 1905 1959 1983 1986 2037 2136 2154 2187 2229 2235 2322 2340 2418 2463 2469 2484 2508 2577 2592 2622 2643 2646 2673 2688 2754 2805 2811 2814 28412844 2850 2910 2973	8K mode 0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377 1491 1683 1704 1752 1758 1791 1845 1860 1896 1905 1959 1983 1986 2037 2136 2154 2187 2229 2235 2322 2340 2418 2463 2469 2484 2508 2577 2592 2622 2643 2646 2673 2688 2754 2805 2811 2814 28412844 2850 2910 2973 3027 3081 3195 3387 3408 3456 3462 3495 3549 3564 3600 3609 3663 3687 3690 3741 3840 3858 3891 3933 3939 4026 4044 4122 4167 4173 4188 4212 4281 4296 4326 4347 4350 4377 4392 4458 4509 4515 4518 4545 4548 4554 4614 4677 4731 4785 4899 5091 5112 5160 5166 5199 5253 5268 5304 5313 5367 5391 5394 5445			
1491 1683 1704	3027 3081 3195 3387 3408	5544 5562 5595 5637 5643 5730 5748 5826 5871 5877 5892 5916 5985 6000 6030 6051 6054 6081 6096 6162 6213 6219 6222 6249 6252 6258 6318			
		6381 6435 6489 6603 6795 6816			

0

Carrier Indices for TPS Carriers

2K mode	4K mode	8K mode
34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687	34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687 1738 1754 1913 2050 2117 2273 2299 2392 2494 2605 2777 2923 2966 2990 3173 3298 3391	34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687 1738 1754 1913 2050 2117 2273 2299 2392 2494 2605 2777 2923 2966 2990 3173 3298 3391 3442 3458 3617 3754 3821 3977 4003 4096 4198 4309 4481 4627 4670 4694 4877 5002 5095 5146 5162 5321 5458 5525 5681 5707 5800 5902 6013 6185 6331 6374 6398 6581 6706 6799

PRES sequence starts: 111111111100...

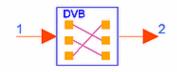
After determining all CP, TPS, and SP positions in each symbol and the value of the PRBS sequence in all active carriers in symbol, this model demultiplexes input data into TPS and TSP data. According to the TPS position and the PRBS sequence, one TPS bit in each TPS position is output.

The channel on current symbol is estimated by utilizing four symbols which are current symbol and previous three symbols. So, after determining all scattered pilots positions in four OFDM symbols, we get the pilot values from the PRBS sequence; channel estimation in scattered pilots can be determined by:

$$h(i) = \frac{x(i)}{PilotValue(i)}$$

where h(i) is the channel estimation, x(i) is the received signal from channel after FFT, and PilotValue(i) is the PRBS value corresponding to CP and SP positions in OFDM symbol.

From the subchannel estimation in the scattered pilots positions, we can use the linear interpolation algorithm for active subchannel estimations as follows: $h(k) = \alpha h(i) + (1 - \alpha)h(j)$


$$\alpha = \frac{j-k}{j-i}$$

where $i \le h \le j$, h(i), and h(j) are the subchannel estimations of scattered pilots which are located in different OFDM symbols and dependent on SPphase parameter. The active carriers and corresponding subchannel carriers are output for use in the equalizer model. The inserted zeros in DTV_DVBLoadIFFTBuff are discarded.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBBitBlockInterlv

Description: DVB bit interleaver **Library:** DTV, DVB-T **Class:** SDFDTV_DVBBitBlockInterlv

Parameters

Name	Description	Default	Unit	Туре	Range
BlockSize	size of bit block to be interleaved	126		int	(0,∞)
Offset	offset of permutation in interleaver	0		int	(0, BlockSize)
Option	operation option: Interleaving, De-interleaving	Interleaving		enum	

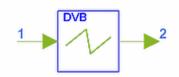
Pin Inputs

1 input input data bits anytype

Pin Outputs

Pin	Name	Description	Signal Type
2	output	interleaved OFDM symbols	anytype

Notes/Equations


1. This model performs bit block interleaving in DVB-T systems. The bit interleaving block size is 126 bits in DVB-T systems. The block interleaving process is repeated 12 times per OFDM symbol of useful data in the 2K mode and 48 times per OFDM symbol in the 8K mode.

Each firing, this model consumes BlockSize points of input data and produces the same amount of output data.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBChannel

Description: DVB channel model for transmission **Library:** DTV, DVB-T **Class:** SDFDTV_DVBChannel

Parameters

Description	Default	Unit	Туре	Range
	Fixed Reception F1		enum	
time interval per symbol	0.123046875e-6	sec	real	(0,∞)
	Description test path environment: Fixed Reception F1, Portable Reception P1 time interval per symbol	test path environment: Fixed Reception F1, Portable Fixed Reception F1	test path environment: Fixed Reception F1, Portable Fixed Reception F1	test path environment: Fixed Reception F1, Portable Fixed Reception F1

Pin Inputs

Pin	Name	Description	Signal Type				
1	in	input signal to channel	complex				
Pin Outputs							

Pin	Name	Description	Signal Type
2	out	output signal from channel	complex

Notes/Equations

- 1. This model is a multipath fading channel with 20 reflected paths to simulate the baseband. It is described in the DVB-T specification for performance evaluation.
- 2. The channel models were generated based on the following equations where x(t) and y(t) are input and output signals, respectively.

The relationship of the output signal y(t) and input signal x(t) is:

$$y(t) = \frac{\rho_0 x(t) + \sum_{i=1}^{N} \rho_i e^{-j2\pi\theta_i} x(t-\tau_i)}{\sqrt{\sum_{i=0}^{N} \rho_i^2}}$$

where

The first term before the sum represents the line of sight ray

N is the number of echoes equal to 20

 Θ_i is the phase shift from scattering of the *i* th path (listed in <u>Attenuation</u>, <u>Phase</u>, and <u>Delay Values</u> for F1 and P1)

P_i is the attenuation of the *i* th path (listed in <u>Attenuation, Phase, and Delay</u> <u>Values for F1 and P1</u>)

 T_i is the relative delay of the *i* th path (listed in <u>Attenuation</u>, <u>Phase</u>, and <u>Delay Values for F1 and P1</u>)

The Rician factor K (ratio of line of sight ray to reflected paths) is:

$$K = \frac{\rho_0^2}{N}$$
$$\sum_{i=1}^{N} \rho_i^2$$

In simulations, a Rician factor K = 10 dB has been used:

$$\rho_0 = \sqrt{10 \sum_{i=1}^{N} \rho_i^2}$$

Portable Reception P1, Rayleigh fading

$$y(t) = k \sum_{i=1}^{n} \rho_i e^{-j2\pi\theta_i} x(t-\tau_i)$$

where

$$k = \frac{1}{\sqrt{\sum_{i=1}^{N} \rho_i^2}}$$

Attenuation, Phase, and Delay Values for F1 and P1

i	P _i	T _j [us]	Θ _i [rad]
1	0.057662	1.003019	4.855121
2	0.176809	5.422091	3.419109
3	0.407163	0.518650	5.864470
4	0.303585	2.751772	2.215894
5	0.258782	0.602895	3.758058
6	0.061831	1.016585	5.430202
7	0.150340	0.143556	3.952093
8	0.051534	0.153832	1.093586
9	0.185074	3.324866	5.775198
10	0.400967	1.935570	0.154459
11	0.295723	0.429948	5.928383
12	0.350825	3.228872	3.053023
13	0.262909	0.848831	0.628578
14	0.225894	0.073883	2.128544
15	0.170996	0.203952	1.099463
16	0.149723	0.194207	3.462951
17	0.240140	0.924450	3.664773
18	0.116587	1.381320	2.833799
19	0.221155	0.640512	3.334290
20	0.259730	1.368671	0.393889

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBChEstimator

Description: Linear channel estimator and channel interpolator for DVB-T **Library:** DTV, DVB-T **Class:** SDFDTV_DVBChEstimator

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one OFDM symbol	1705		int	1705 for 2k mode, 6817 for 8k mode
Order	FFT points=2^Order	11		int	(0, ∞)†
SPperiod	distance in carriers between nearby scattered pilots	12		int	[0, ∞) ⁺⁺
SPstart	start position of scattered pilots in carriers	0		int	[0, ∞) ⁺⁺
SPoffset	offset value of scattered pilots in each symbol	3		int	[0, ∞) ⁺⁺
SPphase	initial phase of scattered pilots	0		int	[0, SPperiod/ SPoffset- 1] ⁺⁺⁺

⁺ Order is the order of FFT; it must satisfy $2^{Order \ge Carriers}$

++ In DVB-T systems: SPperiod=12, SPstart=0, SPoffset=3

⁺⁺⁺ SPphase=3 in OFDM receiver (because DTV_MLEstimator makes one OFDM symbol delay).

Pin Inputs

Pin	Name	Description	Signal Type				
1	input	output signals from FFT	complex				
Pin Outputs							

Pin	Name	Description	Signal Type
2	output	signals in active subcarriers	complex
3	Coef	channel coefficient in active subcarriers	complex

Notes/Equations

- 1. This model provides linear channel estimation and channel interpolation based on the pilot channel; data from the active subcarriers is output.
- 2. The number of IntState of Length determines the number of CP (continual pilot) and TPS in each symbol; the position of CP and TPS are determined according to <u>Carrier</u> <u>Indices for Continual Pilot Carriers</u> and <u>Carrier Indices for TPS Carriers</u>, respectively.

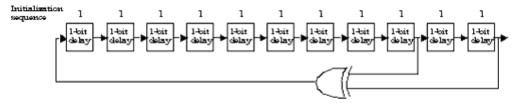
Carrier Indices for Continual Pilot Carriers

Continual Pilot Carrier Positions (index number k)				
2K mode	8K mode			
0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377 1491 1683 1704	0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377 1491 1683 1704 1752 1758 1791 1845 1860 1896 1905 1959 1983 1986 2037 2136 2154 2187 2229 2235 2322 2340 2418 2463 2469 2484 2508 2577 2592 2622 2643 2646 2673 2688 2754 2805 2811 2814 2841 2844 2850 2910 2973 3027 3081 3195 3387 3408 3456 3462 3495 3549 3564 3600 3609 3663 3687 3690 3741 3840 3858 3891 3933 3939 4026 4044 4122 4167 4173 4188 4212 4281 4296 4326 4347 4350 4377 4392 4458 4509 4515 4518 4545 4548 4554 4614 4677 4731 4785 4899 5091 5112 5160 5166 5199 5253 5268 5304 5313 5367 5391 5394 5445 5544 5562 5595 5637 5643 5730 5748 5826 5871 5877 5892 5916 5985 6000 6030 6051 6054 6081 6096 6162 6213 6219 6222 6249 6252 6258 6318 6381 6435 6489 6603 6795 6816			

Carrier Indices for TPS Carriers

2K mode	8K mode
569 595 688 790 901 1073 1219 1262 1286 1469 1594	34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687 1738 1754 1913 2050 2117 2273 2299 2392 2494 2605 2777 2923 2966 2990 3173 3298 3391 3442 3458 3617 3754 3821 3977 4003 4096 4198 4309 4481 4627 4670 4694 4877 5002 5095 5146 5162 5321 5458 5525 5681 5707 5800
1687	5902 6013 6185 6331 6374 6398 6581 6706 6799

PRBS sequences in each segment are generated according to <u>Generation of PRBS</u> <u>Sequence</u>; the initial sets of PRBS register is 11111111111. The PRBS is initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on each carrier used in each segment (whether or not it is a pilot).


Positions of the corresponding scattered pilots are generated as follows. For the symbol of index *I* (ranging from 0 to 67), carriers for which index *k* belongs to subset $\{k = K_{min} + 3 \times l \mod 4 + 12p | p \text{ integer}, p \ge 0, k \in [K_{min}, K_{max}]\}$

are scattered pilot positions.

where *p* is an integer that takes all possible values \geq 0, provided the resulting value for k does not exceed the valid range [K_{min}, K_{max}]; K_{min} = 0, and K_{max}= 1704 (2K

mode) or 6816 (8K mode). SPperiod, SPstart, SPoffset and SPphase parameters control the scattered pilots positions.

Generation of PRBS Sequence

PRES sequence starts: 111111111100

After determining all CP, TPS, and SP positions in each symbol and the value of the PRBS sequence in all active carriers in symbol, this model demultiplexes input data into TPS and TSP data. According to the TPS position and the PRBS sequence, one TPS bit in each TPS position is output.

After determining all CP and SP positions in OFDM symbol, we get the pilot value from the PRBS sequence; channel estimation in CP and SP pilots can be determined:

$$h(i) = \frac{x(i)}{PilotValue(i)}$$

where h(i) is the channel estimation, x(i) is the received signal from channel after FFT, and PilotValue(i) is the PRBS value corresponding to CP and SP positions in OFDM symbol.

From the subchannel estimation in the CP and SP pilots position, we use the linear interpolation algorithm for active subchannel estimations as follows: $h(k) = \alpha h(i) + (1 - \alpha)h(j)$

$$\alpha = \frac{j-k}{j-i}$$

where $i \le h \le j$, h(i), and h(j) are the subchannel estimations of CP or SP pilots. The active carriers and corresponding subchannel carriers are output for use in the equalizer model. The inserted zeros in DTV_DVBLoadIFFTBuff are discarded.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBDemuxOFDMSym

Description: Data and TPS demux for DVB-T symbol **Library:** DTV, DVB-T **Class:** SDFDTV_DVBDemuxOFDMSym

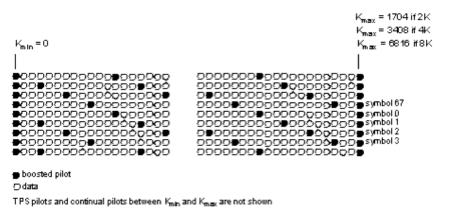
Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one OFDM symbol	1705		int	1705 for 2k mode; 6817 for 8k mode; 3409 for 4k mode
Data	number of input data in one OFDM symbol	1512		int	1512 for 2k mode; 6048 for 8k mode; 3024 for 4k mode
SPperiod	distance in carriers between nearby scattered pilots	12		int	[0, ∞)†
SPstart	start position of scattered pilots in carriers	0		int	[0, ∞)†
SPoffset	offset value of scattered pilots in each symbol	3		int	[0, ∞)†
SPphase	initial phase of scattered pilots	0		int	[0, SPperiod/ SPoffset- 1] ⁺⁺

† In DVB-T systems: SPperiod=12, SPstart=0, SPoffset=3

⁺⁺ SPphase=3 in the OFDM receiver (because DTV_MLEstimator makes one OFDM symbol delay).

Pin Inputs


Pin	n Name Description		Signal Type
1	input	equalized signals before de-multiplexer	complex

Pin Outputs

Pin	Name	Description	Signal Type
2	data	OFDM demodulation data	complex
3	TPS	OFDM demodulation TPS	complex

Notes/Equations

1. This model demultiplexes DVB-T OFDM symbols (such as QPSK, 16- QAM, and 64-QAM modulation) into TSP (transport stream packet) data, TPS (transmission parameter signal) data. The figure below shows the frame structure.

2. The number of IntState of Length determines the number of CP (continual pilot) and TPS in each symbol; the position of CP and TPS are determined according to <u>Carrier</u> <u>Indices for Continual Pilot Carriers</u> and <u>Carrier Indices for TPS Carriers</u>, respectively. PRBS sequences in each segment are generated according to <u>PRBS Sequence</u> <u>Generation</u>; the initial sets of PRBS register is 11111111111. The PRBS in initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on each carrier used in each segment (whether or not it is a pilot).

Positions of the corresponding scattered pilots are generated as follows. For the symbol of index *l* (ranging from 0 to 67), carriers for which index *k* belongs to subset $\{k = K_{min} + 3 \times l \mod 4 + 12p | p \text{ integer}, p \ge 0, k \in [K_{min}, K_{max}]\}$

are scattered pilots positions.

where p is an integer that takes all possible values \geq 0, provided the resulting value for k does not exceed the valid range [K_{min}, K_{max}]; K_{min} = 0, and K_{max} = 1704 (2K

mode), $K_{max} = 3408$ (4K mode), or $K_{max} = 6816$ (8K mode). SPperiod, SPstart,

SPoffset, and SPphase parameters control the scattered pilots positions.

After determining the CP, TPS, and SP positions in each symbol and the value of the PRBS sequence in all active carriers in the symbol, the model demultiplexes the input data into TPS and TSP data. According to the TPS position and the PRBS sequence, one transmitted TPS bit is determined by the mean value of the TPS positions.

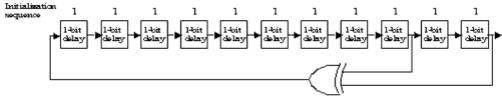
$$TPS = \frac{1}{NTPS} \sum_{l=1}^{n} \frac{x[TPSposition[l]]}{PilotValue[TPSposition[l]]}$$

where *NTPS* is the number of TPS in one symbol; *PilotValue* is the PRBS sequence in symbol; *x*[*i*] is the input data.

Except for TPS, CP, and SP positions, the remaining positions in one segment are the TSP data positions.

Data[i] = x[i]

Carrier Indices for Continual Pilot Carriers


Advanced Design System 2011.01 - DTV Design Library

Continual Pilot	Continual Pilot Carrier Positions (index number k)					
2K mode	4K mode	8K mode				
0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377 1491 1683 1704	0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377 1491 1683 1704 1752 1758 1791 1845 1860 1896 1905 1959 1983 1986 2037 2136 2154 2187 2229 2235 2322 2340 2418 2463 2469 2484 2508 2577 2592 2622 2643 2646 2673 2688 2754 2805 2811 2814 28412844 2850 2910 2973 3027 3081 3195 3387 3408	0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377 1491 1683 1704				
		6096 6162 6213 6219 6222 6249 6252 6258 6318 6381 6435 6489 6603 6795 6816				

Carrier Indices for TPS Carriers

2K mode	4K mode	8K mode
34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687	34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687 1738 1754 1913 2050 2117 2273 2299 2392 2494 2605 2777 2923 2966 2990 3173 3298 3391	34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687 1738 1754 1913 2050 2117 2273 2299 2392 2494 2605 2777 2923 2966 2990 3173 3298 3391 3442 3458 3617 3754 3821 3977 4003 4096 4198 4309 4481 4627 4670 4694 4877 5002 5095 5146 5162 5321 5458 5525 5681 5707 5800 5902 6013 6185 6331 6374 6398 6581 6706 6799

PRBS Sequence Generation

PRES sequence starts: 1111111111100

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBLoadIFFTBuff

Description: Data stream loader into IFFT buffer for DVB-T **Library:** DTV, DVB-T **Class:** SDFDTV_DVBLoadIFFTBuff

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one OFDM symbol	1705		int	1705 for 2k mode;
					6817 for 8k mode;
					3409 for 4k mode
Order	IFFT points=2^Order	13		int	[1, ∞)†

⁺ Order is the order of IFFT; it must satisfy $2^{Order \ge Carriers+1}$

Pin Inputs

Pin	Name	Description	Signal Type
1	input	transmitted signal before IFFT	complex
Pin	Output	ts	

Pin	Name	Description	Signal Type
2	output	IFFT input signal, zero padded	complex

Notes/Equations

- 1. This model loads transmission data into the IFFT buffer, which is used in DVB-T only.
- 2. Implementation

Assume x(0), x(1), ..., x(N-1) are the changed signal segments, where

 $N = Length \times Segments + 1$

 $M = 2^{Order}$

 $y(0), y(1), \dots, y(M-1)$ are the model outputs.

Data loading is performed as follows:

$$y(i) = x \left(\frac{N}{2} + i\right) \qquad i = 0, \dots, \frac{N+1}{2} - 1$$
$$y(i) = 0 \qquad i = \frac{N+1}{2}, \dots, M - \frac{N}{2} - 1$$
$$y(i) = x \left(i - M + \frac{N}{2}\right) \qquad i = M - \frac{N}{2}, \dots, M$$

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.

DTV_DVBMuxOFDMSym

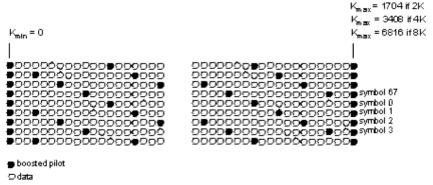
Description: OFDM symbol multiplexer for DVB-T **Library:** DTV, DVB-T **Class:** SDFDTV_DVBMuxOFDMSym

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one OFDM symbol(1705,3409 or 6817)	1705		int	1705 for 2k mode; 3409 for 4k mode; 6817 for 8k mode
Data	number of input data in one OFDM symbol(1512,3024 or 6048)	1512		int	1512 for 2k mode; 3024 for 4k mode; 6048 for 8k mode
SPperiod	distance in carriers between nearby scattered pilots	12		int	[0, ∞)†
SPstart	start position of scattered pilots in carriers			int	(0, ∞)†
SPoffset	offset value of SPstart in each symbol	3		int	(0, ∞)†

† In DVB-T systems: SPperiod=12, SPstart=0, SPoffset=3

Pin Inputs


Pin	Name	Description	Signal Type
1	data	data input	complex
2	TPS	TPS input	complex

Pin Outputs

Pin	Name	Description	Signal Type
3	output	OFDM symbol data output	complex

Notes/Equations

1. This model multiplexes TSP (transport stream packet) and TPS (transmission parameter signal) data into the DVB-T OFDM symbol. The figure below shows the frame structure.

TPS pilots and continual pilots between K_{\min} and K_{\max} are not shown

2. The number of IntState of Length determines the number of CP (continual pilot) and TPS in each symbol; the position of CP and TPS are determined according to <u>Carrier</u> <u>Indices for Continual Pilot Carriers</u> and <u>Carrier Indices for TPS Carriers</u>, respectively. PRBS sequences in each segment are generated according to <u>PRBS Sequence</u> <u>Generation</u>; the initial sets of PRBS register is 1111111111. The PRBS in initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on each carrier in each segment (whether or not it is a pilot).

Positions of the corresponding scattered pilots are generated as follows. For the symbol of index *I* (ranging from 0 to 67), carriers for which index *k* belongs to subset $\{k = K_{min} + 3 \times l \mod 4 + 12p | p \text{ integer}, p \ge 0, k \in [K_{min}, K_{max}]\}$

are scattered pilot positions.

where *p* is an integer that takes all possible values ≥ 0 , provided the resulting value for *k* does not exceed the valid range [K_{min}, K_{max}]; K_{min} = 0, and K_{max} = 1704 (2K mode), K_{max} = 3408 (4K mode), or K_{max} = 6816 (8K mode). SPperiod, SPstart, and

SPoffset parameters control the scattered pilots positions.

After determining the CP, TPS, and SP positions in each symbol and the value of the PRBS sequence in all active carriers in one symbol, the model demultiplexes the input data into TPS and TSP data. According to the TPS position and the PRBS sequence, one TPS bit is output in each TPS position.

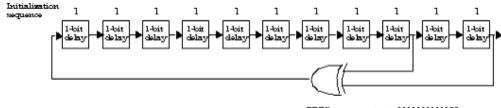
 $x[TPS position[l]] = PilotValue[TPS position[l]] \times TPS$

where *NTPS* is the number of TPS in one symbol; *PilotValue* is the PRBS sequence in symbol; x[i] is the OFDM symbol data.

Except for TPS, CP, and SP positions, the remaining positions in one segment are the TSP data positions.

x[i] = Data[i]

Carrier Indices for Continual Pilot Carriers


Advanced Design System 2011.01 - DTV Design Library

Continual pilot	Continual pilot carrier positions (index number k)					
2K mode	4K mode	8K mode				
0 48 54 87 141	0 48 54 87 141 156 192 201	0 48 54 87 141 156 192 201 255 279 282 333 432				
156 192 201	255 279 282 333 432 450 483	450 483 525 531 618 636 714 759 765 780 804 873				
255 279 282	525 531 618 636 714 759 765	888 918 939 942 969 984 1050 1101 1107 1110 1137				
333 432 450	780 804 873 888 918 939 942	1140 1146 1206 1269 1323 1377 1491 1683 1704				
483 525 531	969 984 1050 1101 1107 1110	1752 1758 1791 1845 1860 1896 1905 1959 1983				
618 636 714	1137 1140 1146 1206 1269	1986 2037 2136 2154 2187 2229 2235 2322 2340				
759 765 780	1323 1377 1491 1683 1704	2418 2463 2469 2484 2508 2577 2592 2622 2643				
804 873 888	1752 1758 1791 1845 1860	2646 2673 2688 2754 2805 2811 2814 28412844				
918 939 942	1896 1905 1959 1983 1986	2850 2910 2973 3027 3081 3195 3387 3408 3456				
969 984 1050	2037 2136 2154 2187 2229	3462 3495 3549 3564 3600 3609 3663 3687 3690				
1101 1107	2235 2322 2340 2418 2463	3741 3840 3858 3891 3933 3939 4026 4044 4122				
1110 1137	2469 2484 2508 2577 2592	4167 4173 4188 4212 4281 4296 4326 4347 4350				
1140 1146	2622 2643 2646 2673 2688	4377 4392 4458 4509 4515 4518 4545 4548 4554				
1206 1269	2754 2805 2811 2814	4614 4677 4731 4785 4899 5091 5112 5160 5166				
1323 1377	28412844 2850 2910 2973	5199 5253 5268 5304 5313 5367 5391 5394 5445				
1491 1683	3027 3081 3195 3387 3408	5544 5562 5595 5637 5643 5730 5748 5826 5871				
1704		5877 5892 5916 5985 6000 6030 6051 6054 6081				
		6096 6162 6213 6219 6222 6249 6252 6258 6318				
		6381 6435 6489 6603 6795 6816				

Carrier Indices for TPS Carriers

2K mode	4K mode	8K mode
	34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687 1738 1754 1913 2050 2117 2273 2299 2392 2494 2605 2777 2923 2966 2990 3173 3298 3391	34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687 1738 1754 1913 2050 2117 2273 2299 2392 2494 2605 2777 2923 2966 2990 3173 3298 3391 3442 3458 3617 3754 3821 3977 4003 4096 4198 4309 4481 4627 4670 4694 4877 5002 5095 5146 5162 5321 5458 5525 5681 5707 5800 5902 6013 6185 6331 6374 6398 6581 6706 6799

PRBS Sequence Generation

PRES sequence starts: 1111111111100 ...

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.5.1, European Telecommunication Standard, November 2004.DT

DTV_DVBSymDeinterlv2b

Description: Symbol de-interleaver with 2 branches **Library:** DTV, DVB-T **Class:** SDFDTV_DVBSymDeinterlv2b **Derived From:** DTV_DVBSymInterlv

Parameters

Name	Description	Default	Unit	Type Rang	je
Mode	DVB OFDM mode: DVB 2k mode, DVB 8k mode	DVB 2k mode		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	input	interleaved OFDM symbol bits	anytype

Pin Outputs

Pin	Name	Description	Signal Type
2	outb0	data symbol bit 0	anytype
3	outb1	data symbol bit 1	anytype

Notes/Equations

- 1. This model performs symbol de-interleaving in DVB-T systems. Each firing, it consumes 1512 (2K mode) or 6048 (8K mode) data symbols at the input and outputs them to each output pin after de-interleaving.
- 2. This model is the reverse of the process used for DTV_DVBSymInterlv2b. The interleaving algorithm is described in DTV_DVBSymInterlv2b.
- 3. This model is one of three symbol de-interleavers with data symbol bit output. 2-, 4-, and 6-bit data symbol de-interleavers are used for QPSK, 16-QAM, and 64-QAM, respectively; after constellation mapping de-mapping, a complex symbol interleaver is used before constellation de-mapping. These models use the same permutation sequence.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBSymDeinterlv4b

Description: Symbol de-interleaver with 4 branches **Library:** DTV, DVB-T **Class:** SDFDTV_DVBSymDeinterlv4b **Derived From:** DTV_DVBSymInterlv

Parameters

Name Description	Default	Unit	Туре	Range
Mode DVB OFDM mode: DVB 2k mode, DVB 8k mode	DVB 2k mode		enum	

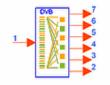
Pin Inputs

Pin	Name	Description	Signal Type
1	input	interleaved OFDM symbol bits	anytype

Pin Outputs

Pin	Name	Description	Signal Type
2	outb0	data symbol bit 0	anytype
3	outb1	data symbol bit 1	anytype
4	outb2	data symbol bit 2	anytype
5	outb3	data symbol bit 3	anytype

Notes/Equations


- 1. This model performs symbol de-interleaving in DVB-T systems. Each firing, it consumes 1512 (2K mode) or 6048 (8K mode) data symbols at the input and outputs them to each output pin after de-interleaving.
- 2. This model is the reverse of the process used for DTV_DVBSymInterlv4b. The interleaving algorithm is described in DTV_DVBSymInterlv4b.
- 3. This model is one of three symbol de-interleavers with data symbol bit output. 2-, 4-, and 6- data symbol de-interleavers are used for QPSK, 16-QAM, and 64-QAM, respectively; after constellation mapping de-mapping, a complex symbol interleaver is used before constellation de-mapping. These models use the same permutation sequence.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European

Advanced Design System 2011.01 - DTV Design Library Telecommunication Standard, July 1999.

DTV_DVBSymDeinterlv6b

Description: Symbol de-interleaver with 6 branches **Library:** DTV, DVB-T **Class:** SDFDTV_DVBSymDeinterlv6b **Derived From:** DTV_DVBSymInterlv

Parameters

Name Description	Default	Unit	Туре	Range
Mode DVB OFDM mode: DVB 2k mode, DVB 8k mode	DVB 2k mode		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	input	interleaved OFDM symbol bits	anytype

Pin Outputs

Pin	Name	Description	Signal Type
2	outb0	data symbol bit 0	anytype
3	outb1	data symbol bit 1	anytype
4	outb2	data symbol bit 2	anytype
5	outb3	data symbol bit 3	anytype
6	outb4	data symbol bit 4	anytype
7	outb5	data symbol bit 5	anytype

Notes/Equations

- 1. This model performs symbol de-interleaving in DVB-T systems. Each firing, it consumes 1512 (2K mode) or 6048 (8K mode) data symbols at the input and outputs them to each output pin after de-interleaving.
- 2. This model is the reverse of the process used for DTV_DVBSymInterlv6b. The interleaving algorithm is described in DTV_DVBSymInterlv6b.
- 3. This model is one of three symbol de-interleavers with data symbol bit output. 2-, 4-, and 6-bit data symbol de-interleavers are used for QPSK, 16-QAM, and 64-QAM, respectively; after constellation mapping de-mapping, a complex symbol interleaver is used before constellation de-mapping. These models use the same permutation sequence.

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBSymInterlv2b

Description: Symbol interleaver with 2 branches **Library:** DTV, DVB-T **Class:** SDFDTV_DVBSymInterlv2b **Derived From:** DTV_DVBSymInterlv

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	DVB OFDM mode: DVB 2k mode, DVB 8k mode	DVB 2k mode		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	inb0	data symbol bit 0	anytype
2	inb1	data symbol bit 1	anytype

Pin Outputs

Pin	Name	Description	Signal Type
3	output	interleaved OFDM symbol bits	anytype

Notes/Equations

- 1. This model performs symbol interleaving in DVB-T systems. Each firing, it consumes 1512 (2K mode) or 6048 (8K mode) bits data in each input pin, and outputs them after interleaving. The interleaving algorithm is described in <u>note 2</u>.
- 2. This model is one of the three symbol interleavers with data symbol bit inputs. 2-, 4-, and 6-bit data symbol interleavers are used for QPSK, 16-QAM, and 64-QAM, respectively, before constellation mapping; a complex symbol interleaver is used after constellation mapping. These models use the same permutation sequence. Interleaving Algorithm

Define input vector Y' and interleaved vector Y as:

$$\begin{aligned} Y' &= (y'_0, y'_1, y'_2, \dots, y'_{N_{max-1}}) \\ Y &= (y_0, y_1, y_2, \dots, y_{N_{max-1}}) \\ Y_{H(q)} &= Y'_q \quad \text{for even symbols for} \quad q = 0, \dots N_{max} - 1 \\ Y_q &= Y'_{H(q)} \quad \text{for odd symbols for} \quad q = 0, \dots N_{max} - 1 \\ \text{where} \quad & N_{max} = 1512 \quad \text{in 2K mode and} \quad & N_{max} = 6048 \\ H(q) \text{ is a permutation function defined by the following:} \end{aligned}$$

An ${N_r = \log 2(M_{max})}$, where ${M_{max} = 1512}$ in 2K mode and ${M_{max} = 2048}$ in the 8K mode, where ${R'_i}$ takes the following values:

$$i = 0,1: \frac{R'_i[N_r - 2, N_r - 3, ..., 1, 0] = (0, 0, ..., 0, 0)}{i = 2: \frac{R'_i[N_r - 2, N_r - 3, ..., 1, 0] = (0, 0, ..., 0, 1)}{2 < i < M_{max}}$$

 $\begin{cases} R'_{i}[N_{r}-3, N_{r}-4, \dots, 1, 0] = R'_{i-1}[N_{r}-2, N_{r}-3, \dots, 1, 0]; \\ \text{in the 2K mode:} \\ R'_{i}[9] = (R'_{i-1}[0] \oplus R'_{i-1}[3]) \\ R'_{i}[9] = (R'_{i-1}[0] \oplus R'_{i-1}[1] \oplus R'_{i-1}[4] \oplus R'_{i-1}[6]) \\ R'_{i}[9] = (R'_{i-1}[0] \oplus R'_{i-1}[1] \oplus R'_{i-1}[4] \oplus R'_{i-1}[6]) \\ \text{A vector } R_{i} \text{ is derived from vector } R'_{i} \text{ by bit permutations given in } 2K \text{ Mode Bit Permutations.} \end{cases}$

2K Mode Bit Permutations

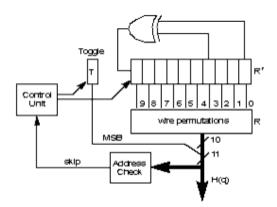
R'_i	9	8	7	6	5	4	3	2	1	0
R _i	0	7	5	1	8	2	6	9	4	3

8K Mode Bit Permutations

R'_i	11	10	9	8	7	6	5	4	3	2	1	0
R_i	5	11	3	0	10	8	6	9	2	4	1	7

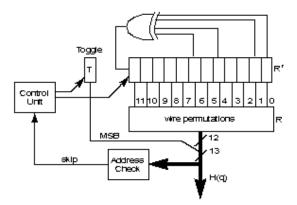
The permutation function H(q) is defined by the algorithm q = 0; for (i = 0; i < M_{max} ; i = i+1)

{


$$H(q) = (iMOD2) \times 2^{N_r - 1} + \sum_{i=0}^{N_r - 2} R_i(j) \times 2^{j}$$

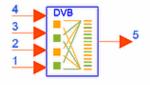
if (H(q) < N_{max}) q = q+1;

}


The algorithm used to generate the permutation function is shown in <u>2K Mode</u> <u>Symbol Interleaver Address Generation</u> for the 2K mode and <u>8K Mode Symbol</u> <u>Interleaver Address Generation</u> for the 8K mode.

Each input signal generates its own input Y' vector and interleaved Y vector. All interleaved Y vectors are synthesized into the output signal.

Advanced Design System 2011.01 - DTV Design Library 2K Mode Symbol Interleaver Address Generation


8K Mode Symbol Interleaver Address Generation

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBSymInterlv4b

Description: Symbol interleaver with 4 branches **Library:** DTV, DVB-T **Class:** SDFDTV_DVBSymInterlv4b **Derived From:** DTV_DVBSymInterlv

Parameters

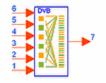
Name	Description	Default	Unit	Туре	Range
Mode	DVB OFDM mode: DVB 2k mode, DVB 8k mode	DVB 2k mode		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	inb0	data symbol bit 0	anytype
2	inb1	data symbol bit 1	anytype
3	inb2	data symbol bit 2	anytype
4	inb3	data symbol bit 3	anytype

Pin Outputs

Pin	Name	Description	Signal Type
5	output	interleaved OFDM symbol bits	anytype


Notes/Equations

- 1. This model performs symbol interleaving in DVB-T systems. Each firing, it consumes 1512 (2K mode) or 6048 (8K mode) bits data in each input pin, and outputs them after interleaving. The interleaving algorithm is the same as that described for DTV_DVBSymInterlv2b except for the input bit streams.
- 2. This model is one of the three symbol interleavers with data symbol bit inputs. 2-, 4-, and 6-bit data symbol interleavers are used for QPSK, 16-QAM, and 64-QAM, respectively, before constellation mapping; a complex symbol interleaver is used after constellation mapping. These models use the same permutation sequence.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBSymInterlv6b

Description: Symbol interleaver with 6 branches **Library:** DTV, DVB-T **Class:** SDFDTV_DVBSymInterlv6b **Derived From:** DTV_DVBSymInterlv

Parameters

Name Description	Default	Unit	Туре	Range
Mode DVB OFDM mode: DVB 2k mode, DVB 8k mod	e DVB 2k mode		enum	

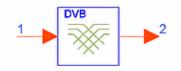
Pin Inputs

Name	Description	Signal Type
inb0	data symbol bit 0	anytype
inb1	data symbol bit 1	anytype
inb2	data symbol bit 2	anytype
inb3	data symbol bit 3	anytype
inb4	data symbol bit 4	anytype
inb5	data symbol bit 5	anytype
	inb0 inb1 inb2 inb3 inb4	inb1data symbol bit 1inb2data symbol bit 2inb3data symbol bit 3inb4data symbol bit 4

Pin Outputs

Pin	Name	Description	Signal Type
7	output	interleaved OFDM symbol bits	anytype

Notes/Equations


- 1. This model performs symbol interleaving in DVB-T systems. Each firing, it consumes 1512 (2K mode) or 6048 (8K mode) bits data in each input pin and outputs them after interleaving. The interleaving algorithm is the same as that described for DTV_DVBSymInterlv2b except for the input bit streams.
- 2. This model is one of the three symbol interleavers with data symbol bit inputs. 2-, 4-, and 6-bit data symbol interleavers are used for QPSK, 16-QAM, and 64-QAM, respectively, before constellation mapping; a complex symbol interleaver is used after constellation mapping. These models use the same permutation sequence.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European

Advanced Design System 2011.01 - DTV Design Library Telecommunication Standard, July 1999.

DTV_DVBSymInterlvCx

Description: Symbol interleaver Library: DTV, DVB-T Class: SDFDTV_DVBSymInterlvCx Derived From: DTV_DVBSymInterlv

Parameters

Name	Description	Default	Unit	Type Range
Mode	DVB OFDM mode: DVB 2k mode, DVB 8k mode	DVB 2k mode		enum
Option	operation option: Interleaving, De-interleaving	Interleaving		enum
Pin In	puts			

	-		
Pin	Name	Description	Signal Type
1	input	OFDM symbols after constellation mapping	anytype

Pin Outputs

Pin	Name	Description	Signal Type
2	output	interleaved OFDM symbols	anytype

Notes/Equations

- 1. This model performs complex symbol interleaving in DVB-T systems. Each firing, it consumes 1512 (2K mode) or 6048 (8K mode) data bits at the input and outputs them after interleaving. The interleaving algorithm is the same as that described for DTV_DVBSymInterlv2b.
- 2. Besides this complex symbol interleaver, there are three symbol interleavers using data bits as input. The data symbol interleavers are used before constellation mapping; the complex symbol interleaver is used after constellation mapping. These models use the same permutation sequence.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTHierInnerDeInterlv

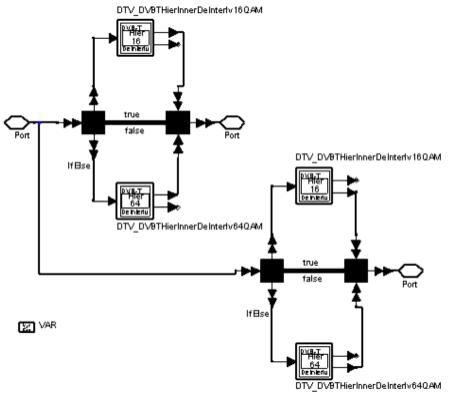
Description: Inner de-interleaver for 16QAM, 64QAM hierarchical transmission modes **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTHierInnerDeInterlv

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode		enum	
MappingMode	signal constellations and mapping: QAM-16, QAM-64	QAM-16		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	Symbols	input of inner de-interleaver	anytype


Pin Outputs

Pin	Name	Description	Signal Type
2	HP_Bits	The high priority bit stream for hierarchical modes	anytype
3	LP_Bitstream	The low priority bit stream for hierarchical modes	anytype

Notes/Equations

1. This subnetwork model performs inner de-interleaving for 16QAM and 64QAM for hierarchical transmission. 16QAM and 64QAM functions are performed by an if-else structure. The schematic for this subnetwork is shown below.

DTV_DVBTHierInnerDeInterlv Subnetwork

- 2. The Mode parameter specifies the 2K or 8K mode.
- 3. The MappingMode parameter specifies QAM-16 or QAM-64.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTHierInnerInterlv

Description: Inner interleaver for 16QAM, 64QAM hierarchical transmission mode **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTHierInnerInterlv

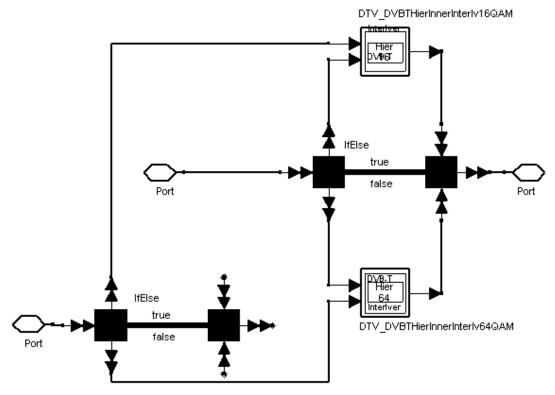
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode		enum	
MappingMode	signal constellations and mapping: QAM-16, QAM-64	QAM-16		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	HP_Bits	The high priority bit stream for hierarchical modes	anytype
2	LP_Bits	The low priority bit stream for hierarchical modes	anytype
Dim	Outpute		

Pin Outputs

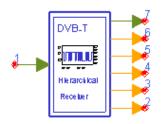

Pin	Name	Description	Signal Type
3	Symbols	output of inner interleaver	anytype

Notes/Equations

1. This subnetwork model performs 16QAM and 64QAM inner interleaving for hierarchical transmission. 16QAM and 64QAM inner interleaver is integrated; functions are performed by an if-else structure. The schematic for this subnetwork is shown below.

DTV_DVBTHierInnerInterlv Schematic

Advanced Design System 2011.01 - DTV Design Library


Var Ban VAR

- 2. The Mode parameter specifies the 2K or 8K mode.
- 3. The MappingMode parameter specifies QAM-16 or QAM-64.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTHierReceiver

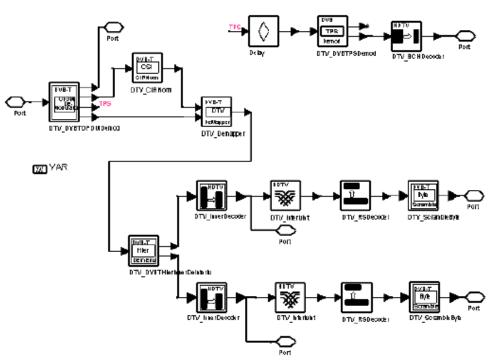
Description: DVB-T hierarchical receiver **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTHierReceiver

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode			enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S		enum	
GuardInterval	guard interval (frac FFT size)	0.125			real	[0, 1]
CodeRateHP	high priority stream current code rate: HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8	HP 1/2			enum	
CodeRateLP	low priority stream current code rate: LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8	LP 1/2			enum	
MappingMode	signal consetllaions and mapping: QAM-16, QAM-64	QAM-16			enum	
Alpha	non-uniform factor for DVB-T.	1			int	[1,∞)
SoftDecision	soft decision viterbi decoding type: Soft, Hard, Cochannel	Soft			enum	
TrunLen	path memory truncation length of Viterbi decoding algorithm, in bytes	10			int	[5,∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	Rx_signal	received OFDM signal to be demodulated	complex


Pin Outputs

Pin	Name	Description	Signal Type
2	HPBytes_Decoded	decoded bytes after Reed Solomon decoder with high priority	int
3	LPBytes_Decoded	decoded bytes after Reed Solomon decoder with low priority	int
4	HPBytes_AfterViterbi	decoded bytes after Viterbi decoder with high priority	int
5	LPBytes_AfterViterbi	decoded bytes after Viterbi decoder with low priority	int
6	TPS_Bits	decoded TPS information bits	int
7	constellation	constellation signal after OFDM demodulation	complex

Notes/Equations

1. This subnetwork model implements the DVB-T hierarchical receiver function. The schematic for this subnetwork is shown below.

DTV_DVBTHierReceiver Schematic

2. Output Delays

The constellation pin has a delay of 8 OFDM symbols. The 8 \times 1705 (2K mode) or 8 \times 6817 (8K mode) constellation output signals are not used for EVM calculation. DTV_BCHDecoder uses a 68-bit block; so, a Delay component with N=60 is inserted before DTV_DVBTPSDemod. Pin TPS_Bits has one DVB-T frame (68 OFDM symbols) delay; the first 53 bits at TPS_Bits are not used.

LPBytes_AfterViterbi and HPBytes_AfterViterbi each have 8 OFDM symbol delays. The inner decoding (or convolutional decoding) is based on MPEG-2 transport MUX packet. So, the LPBytes_Decoded, HPBytes_Decoded, HPBytes_AfterViterbi, and LPBytes_AfterViterbi delays must be multiples of coded (204) and uncoded (188) transport MUX packet blocks.

The information bytes per one OFDM symbol in HPBytes_AfterViterbi is calculated as follows:

DataPerOFDMSymbol=1512 (2K mode) or 6048 (8K mode)

CodedBlockSize=204

HPCodeRate = 1/2, 2/3, 3/4, 5/6 or 7/8

DelayOFDMSymbols = 8

HPInfoBytes = DelayOFDMSymbols×DataPerOFDMSymbol×HPCodeRate/8

The block delay of HPBytes_AfterViterbi is Delay_HPAfterViterbi and calculated as

follows:

```
HPDelayBytes= DelayOFDMSymbols×HPInfoBytes-
(int(DelayOFDMSymbols×HPInfoBytes/CodedBlockSize))×CodedBlockSize
```

N_HP=int((TrunLen+LPDelayBytes)/CodedBlockSize)

```
Delay_HPAfterViterbi=1\
+int((DelayOFDMSymbols×HPInfoBytes)/CodedBlockSize)+N_HP.
```

Block size is 204 bytes.

The information bytes per one OFDM symbol in LPBytes_AfterViterbi is calculated as follows:

DataPerOFDMSymbol=1512 (2K mode) or 6048 (8K mode)

CodedBlockSize=204

BitsPerQAMmappingLP=2 for 16-QAM or 4 for 64-QAM,

LPCodeRate = 1/2, 2/3, 3/4, 5/6 or 7/8

LPInfoBytes=BitsPerQAMmappingLP×DataPerOFDMSymbol×LPCodeRate/8

The block delay of LPBytes_AfterViterbi is Delay_LPAfterViterbi is calculated as follows:

LPDelayBytes= DelayOFDMSymbols×LPInfoBytes-(int(DelayOFDMSymbols×LPInfoBytes/CodedBlockSize))×CodedBlockSize,

N_LP=int((TrunLen+LPDelayBytes)/CodedBlockSize),

Delay_LPAfterViterbi=1 +int((DelayOFDMSymbols×LPInfoBytes)/CodedBlockSize)+N_LP.

Block size is 204 bytes.

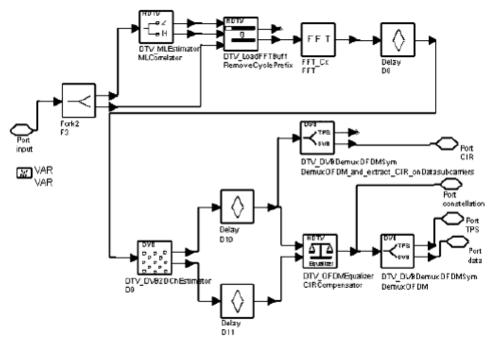
HPBytes_Decoded and LPBytes_Decoded each have 8 OFDM symbol and 11 transport MUX packet delays.

The block delay of HPBytes_Decoded is:

Delay_HPDecoded=11 +1+int((DelayOFDMSymbols×HPInfoBytes)/CodedBlockSize)+N_HP.

Block size is 188 bytes.

The block delay of LPBytes_Decoded is


Delay_LPDecoded=11 +1+int((DelayOFDMSymbols×LPInfoBytes)/CodedBlockSize)+N_LP.

Block size is 188 bytes.

Advanced Design System 2011.01 - DTV Design Library

 Receiver functions are implemented according to the DVB-T Standard. Start of OFDM symbol is detected by the DTV_DVBTOFDMDemod subnetwork (shown below).

DTV_DVBTOFDMDemod Schematic

DTV_MLEstimator calculates the correlation based on guard interval; DTV_LoadFFTBuff selects the index with the maximum correlation value as the start of FFT.

DTV_DVBCh2DEstimator estimates the complex channel impulse responses for continual and scattered pilot subcarriers. The channel impulse responses of the data subcarriers are 2D interpolated based on the estimated CIR.

Each subcarrier value is divided with a complex estimated channel response coefficient (phase tracking, phase synchronization, and equalization). This simple one-tap frequency domain channel response compensation is implemented by DTV_OFDMEqualizer.

After equalization, DTV_DVBDemuxOFDMSym demultiplexes 1705 or 6817 subcarriers into 1512 (2K mode) or 6048 (8K mode) data subcarriers and 1 demodulated TPS.

The demodulated 1512 or 6048 data subcarriers (such as 16QAM, and 64QAM modulation) are demapped by DTV_Demapper.

The demodulated bits are deinterleaved by DTV_DVBTHierInnerDeinterlv and divided into high- and low-priority demodulated bits. The demodulated bits are inner decoded (DTV_InnerDecoder), outer de-interleaved (DTV_InterlvInt), outer decoded

(DTV_RSDecoder) and descrambled (DTV_ScrambleByte). The fully-decoded highand low-priority stream bytes are output as HPBytes_Decoded and LPBytes_Decoded. After inner-decoding, the partially-decoded high- and low-priority stream bytes are output as HPBytes_AfterViterbi and LPBytes_AfterViterbi.

The TPS signal is demodulated by DTV_DVBTPSDemod; the demodulated bits are decoded by DTV_BCHDecoder.

Output pins of this DTV_DVBTHierReceiver subnetwork correspond to those of

DTV_DVBTHierSignalSrc.

This hierarchical receiver works per one OFDM symbol. The number of samples of each OFDM symbol (Rx_signal input pin) is:

(1+GuardInterval)×2048×OversamplingRatio (2K mode)

(1+GuardInterval)×8192×OversamplingRatio (8K mode)

The number of signals at the constellation output pin is 1705 (2K mode) or 6817 (8K mode) per one OFDM symbol.

4. Parameter Details

Mode specifies the 2K or 8K transmission mode as defined in DVB-T. OversamplingOption specifies the transmission signal oversampling ratio 1, 2, 4, 8, 16, 32. If OversamplingOption=Ratio 2, the IFFT size is 4096 for 2K mode or 16384 for 8K mode.

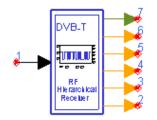
GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. Guard interval types 1/4, 1/8, 1/16 and 1/32 are defined in the DVB-T specification. GuardInterval can be set to any value between 0.0 and 1.0 (not just 1/4, 1/8, 1/16 and 1/32). For proper demodulation, the value must match the guard interval length actually used in the input signal.

CodeRateHP specifies the high-priority stream code rate: 1/2, 2/3, 3/4, 5/6 or 7/8. CodeRateLP specifies the low-priority stream code rate: 1/2, 2/3, 3/4, 5/6 or 7/8. MappingMode specifies signal constellation and mapping modes: 16-QAM or 64-QAM. Alpha is used for signal constellation and mapping as defined in DVB-T specifications. If Alpha=1, 16-QAM or 64-QAM uniform mapping is performed; if Alpha=2 or 4, 16-QAM or 64-QAM in non-uniform mapping is performed.

SoftDecision specifies the Viterbi decoding algorithm mode.

If SoftDecision=Soft, the Viterbi decoding algorithm is a soft decision decoder and uses channel status information.

If SoftDecision=Hard, the Viterbi decoding algorithm is a hard decision decoder and does not use channel status information.


If SoftDecision=Cochannel, the Viterbi decoding algorithm is for co-channel measurement with PAL analog TV and digital DVB-T.

TrunLen sets the truncation length (in bytes) in the Viterbi decoding algorithm. The path memory is 8×TrunLen bits in the Viterbi decoding algorithm.

References

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. W.C.Lee, H.M.Park, K.J.Kang, K.B.Kim, "Performance Analysis of Viterbi Decoder Using Channel State Information in COFDM System" *IEEE TRANSACTIONS ON BROADCASTING*, Vol.,44,NO.4, DECEMBER 1998.

DTV_DVBTHierReceiver_RF

Description: DVB-T RF hierarchical receiver **Library:** DTV, DVB-T **Class:** TSDFDTV_DVBTHierReceiver_RF

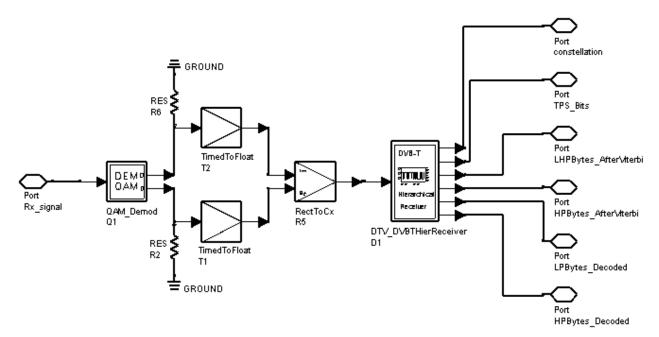
Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
RIn	input resistance	DefaultRIn		Ohm	real	(0,∞)
ROut	output resistance	DefaultROut		Ohm	real	(0,∞)
RTemp	physical temperature, in degrees C	DefaultRTemp		Celsius	real	[-273.15, ∞)
GainImbalance	Gain imbalance, Q vs I	0.0		dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0		deg	real	(-∞, ∞)
FCarrier	carrier frequency	474.0MHz		Hz	real	(0,∞)
Sensitivity	voltage output sensitivity, Vout/Vin	1			real	(-∞, ∞)
Phase	reference phase in degrees	0.0		deg	real	(-∞, ∞)
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode			enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S		enum	
GuardInterval	guard interval (frac FFT size)	0.125			real	[0, 1]
CodeRateHP	high priority stream current code rate: HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8	HP 1/2			enum	
CodeRateLP	low priority stream current code rate: LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8	LP 1/2			enum	
MappingMode	signal consetllaions and mapping: QAM-16, QAM-64	QAM-16			enum	
Alpha	non-uniform factor for DVB-T.	1			int	[1, ∞)
SoftDecision	soft decision viterbi decoding type: Soft, Hard, Cochannel	Soft			enum	
TrunLen	path memory truncation length of Viterbi decoding algorithm, in bytes	10			int	[5, ∞)

Pin Inputs

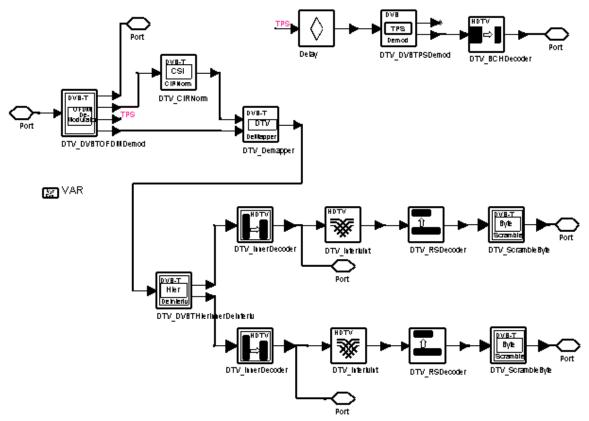
Pin	Name	Description	Signal Type
1	Rx_signal	received OFDM signal to be demodulated	timed

Pin Outputs


Advanced Design System 2011.01 - DTV Design Library

Pin	Name	Description	Signal Type
2	HPBytes_Decoded	decoded bytes after Reed Solomon decoder with high priority	int
3	LPBytes_Decoded	decoded bytes after Reed Solomon decoder with low priority	int
4	HPBytes_AfterViterbi	decoded bytes after Viterbi decoder with high priority	int
5	LPBytes_AfterViterbi	decoded bytes after Viterbi decoder with low priority	int
6	TPS_Bits	decoded TPS information bits	int
7	constellation	constellation signal after OFDM demodulation	complex

Notes/Equations


1. This subnetwork model implements the DVB-T RF hierarchical receiver function. The received RF signal is demodulated and fed to the baseband receiver. The schematic for this subnetwork is shown below.

DTV_DVBTHierReceiver_RF schematic

The baseband demodulator schematic is shown below.

DTV_DVBTHierReceiver Schematic

2. Output Delays

The constellation pin has a delay of 8 OFDM symbols. The first 8 \times 1705 (2K mode) or 8 \times 6817 (8K mode) constellation output signals are not used for EVM calculation. DTV_BCHDecoder uses a 68-bit block; so, a Delay component with N=60 is inserted before DTV_DVBTPSDemod.

Pin TPS_Bits has one DVB-T frame (68 OFDM symbols) delay; the first 53 bits at TPS_Bits are not used.

LPBytes_AfterViterbi and HPBytes_AfterViterbi each have 8 OFDM symbol delays. Inner (or convolutional) decoding is based on an MPEG-2 transport MUX packet. So, the LPBytes_Decoded, HPBytes_Decoded, HPBytes_AfterViterbi, and

LPBytes_AfterViterbi delays must be multiples of coded (204) and uncoded (188) transport MUX packet blocks.

The information bytes for one OFDM symbol in HPBytes_AfterViterbi is calculated as follows:

DataPerOFDMSymbol=1512 (2K mode) or 6048 (8K mode)

CodedBlockSize=204

HPCodeRate = 1/2, 2/3, 3/4, 5/6 or 7/8

DelayOFDMSymbols = 8

```
HPInfoBytes=DelayOFDMSymbols×DataPerOFDMSymbol×HPCodeRate/8
```

The block delay of HPBytes_AfterViterbi is Delay_HPAfterViterbi and calculated as follows:

HPDelayBytes= DelayOFDMSymbols×HPInfoBytes-

Advanced Design System 2011.01 - DTV Design Library (int(DelayOFDMSymbols×HPInfoBytes/CodedBlockSize))×CodedBlockSize

N_HP=int((TrunLen+LPDelayBytes)/CodedBlockSize)

Delay_HPAfterViterbi=1+int\

((DelayOFDMSymbols×HPInfoBytes)/CodedBlockSize)+N_HP.

Block size is 204 bytes.

The information bytes for one OFDM symbol in LPBytes_AfterViterbi is calculated as follows:

DataPerOFDMSymbol=1512 (2K mode) or 6048 (8K mode)

CodedBlockSize=204

BitsPerQAMmappingLP=2 for 16-QAM or 4 for 64-QAM,

LPCodeRate = 1/2, 2/3, 3/4, 5/6 or 7/8

LPInfoBytes=BitsPerQAMmappingLP×DataPerOFDMSymbol ×LPCodeRate/8

The block delay of LPBytes_AfterViterbi is Delay_LPAfterViterbi is calculated as follows:

LPDelayBytes= DelayOFDMSymbols×LPInfoBytes-(int(DelayOFDMSymbols×LPInfoBytes/CodedBlockSize))×CodedBlockSize,

N_LP=int((TrunLen+LPDelayBytes)/CodedBlockSize),

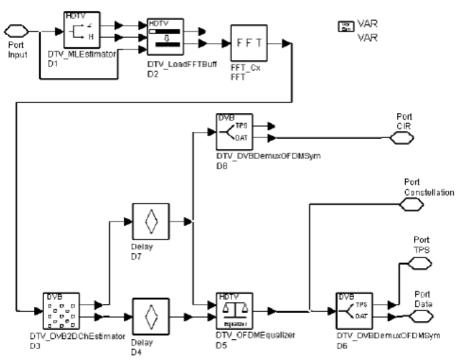
Delay_LPAfterViterbi= 1+int((DelayOFDMSymbols×LPInfoBytes)/CodedBlockSize)+N_LP.

Block size is 204 bytes.

HPBytes_Decoded and LPBytes_Decoded each have 8 OFDM symbols and 11 transport MUX packet delays. The block delay of HPBytes_Decoded is:

Delay_HPDecoded= 11+1+int((DelayOFDMSymbols×HPInfoBytes)/CodedBlockSize)+N_HP.

Block size is 188 bytes.


The block delay of LPBytes_Decoded is

Delay_LPDecoded= 11+1+int((DelayOFDMSymbols×LPInfoBytes)/CodedBlockSize)+N_LP.

Block size is 188 bytes.

3. Receiver functions are implemented according to the DVB-T Standard. Start of OFDM symbol is detected by the DTV_DVBTOFDMDemod subnetwork (see

DTV_DVBTOFDMDemod Schematic

DTV_MLEstimator calculates the correlation based on guard interval; DTV_LoadFFTBuff selects the index with the maximum correlation value as the start of FFT.

DTV_DVBCh2DEstimator estimates the complex channel impulse responses for continual and scattered pilot subcarriers. Channel impulse responses of the data subcarriers are 2D interpolated based on the estimated CIR.

Each subcarrier value is divided with a complex estimated channel response coefficient (phase tracking, phase synchronization, and equalization). This simple one-tap frequency domain channel response compensation is implemented by DTV_OFDMEqualizer.

After equalization, DTV_DVBDemuxOFDMSym demultiplexes 1705 or 6817 subcarriers into 1512 (2K mode) or 6048 (8K mode) data subcarriers and 1 demodulated TPS.

The demodulated 1512 or 6048 data subcarriers (16QAM, and 64QAM modulation) are demapped by DTV_Demapper.

The demodulated bits are deinterleaved by DTV_DVBTHierInnerDeinterlv and divided into high- and low-priority demodulated bits. The demodulated bits are inner decoded (DTV_InnerDecoder), outer de-interleaved (DTV_InterlvInt), outer decoded

(DTV_RSDecoder) and descrambled (DTV_ScrambleByte). The fully-decoded highand low-priority stream bytes are output as HPBytes_Decoded and LPBytes_Decoded. After inner-decoding, the partially-decoded high- and low-priority stream bytes are output as HPBytes_AfterViterbi and LPBytes_AfterViterbi.

The TPS signal is demodulated by DTV_DVBTPSDemod; the demodulated bits are decoded by DTV_BCHDecoder.

Output pins of this DTV_DVBTHierReceiver subnetwork correspond to those of DTV_DVBTHierSignalSrc.

This hierarchical receiver works uses one OFDM symbol. The number of samples of each OFDM symbol (Rx_signal input pin) is:

(1+GuardInterval)×2048×OversamplingRatio for 2K mode

(1+GuardInterval)×8192×OversamplingRatio for 8K mode

The number of signals at the constellation output pin is 1705 (2K mode) or 6817 (8K mode) for one OFDM symbol.

4. Parameter Details

GainImbalance and PhaseImbalance add certain impairments to the ideal output RF signal. Impairments are added in the order described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

$$V_3(t) = A\left(V_1(t)\cos(\omega_c t) - gV_2(t)\sin\left(\omega_c t + \frac{\phi\pi}{180}\right)\right)$$

where $V_1(t)$ is the in-phase RF envelope, $V_2(t)$ is the quadrature phase RF envelope, g

is the gain imbalance <u>GainImbalance</u>

g = 10

and, Φ (in degrees) is the phase imbalance.

Mode specifies the 2K or 8K transmission mode as defined in DVB-T.

OversamplingOption specifies the transmission signal oversampling ratio 1, 2, 4, 8, 16, 32. If OversamplingOption=Ratio 2, the IFFT size is 4096 for 2K mode or 16384 for 8K mode.

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. Guard interval types 1/4, 1/8, 1/16 and 1/32 are defined in the DVB-T specification. GuardInterval can be set to any value between 0.0 and 1.0 (not just 1/4, 1/8, 1/16 and 1/32). For proper demodulation, the value must match the guard interval length actually used in the input signal.

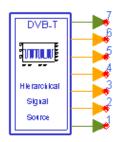
CodeRateHP specifies the high-priority stream code rate: 1/2, 2/3, 3/4, 5/6 or 7/8. CodeRateLP specifies the low-priority stream code rate: 1/2, 2/3, 3/4, 5/6 or 7/8. MappingMode specifies signal constellations and mapping for the DVB-T hierarchical signal source. Mapping modes 16-QAM and 64-QAM are available.

Alpha is used for signal constellation and mapping as defined in DVB-T specifications. If Alpha=1, 16-QAM or 64-QAM uniform mapping is performed; if Alpha=2 or 4, 16-QAM or 64-QAM in non-uniform mapping is performed.

SoftDecision specifies the Viterbi decoding algorithm mode.

If SoftDecision=Soft, the Viterbi decoding algorithm is a soft decision decoder and uses channel status information.

If SoftDecision=Hard, the Viterbi decoding algorithm is a hard decision decoder and does not use channel status information.


If SoftDecision=Cochannel, the Viterbi decoding algorithm is for co-channel measurement with PAL analog TV and digital DVB-T.

TrunLen sets the truncation length (in bytes) in the Viterbi decoding algorithm. The

References

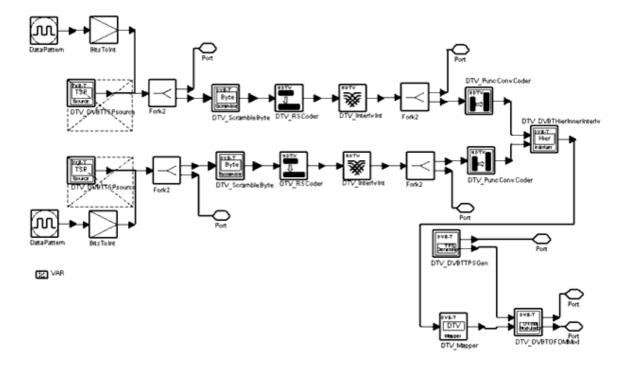
- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. W.C.Lee, H.M.Park, K.J.Kang, K.B.Kim, "Performance Analysis of Viterbi Decoder Using Channel State Information in COFDM System" *IEEE TRANSACTIONS ON BROADCASTING*, Vol.,44,NO.4, DECEMBER 1998.

DTV_DVBTHierSignalSrc

Description: DVB-T hierarchical signal source **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTHierSignalSrc

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode			enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S		enum	
GuardInterval	guard interval (frac FFT size)	0.125			real	[0, 1]
CodeRateHP	high priority stream current code rate: HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8	HP 1/2			enum	
CodeRateLP	low priority stream current code rate: LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8	LP 1/2			enum	
MappingMode	signal consetllaions and mapping: QAM-16, QAM-64	QAM-16			enum	
Alpha	non-uniform factor for DVB-T.	1			int	[1,∞)
DataTypeHP	Payload data type with high priority: PN9 HP, PN15 HP, FIX4 HP, _4_1_4_0 HP, _8_1_8_0 HP, _16_1_16_0 HP, _32_1_32_0 HP, _64_1_64_0 HP	PN9 HP			enum	
DataTypeLP	Payload data type with low priority: PN9 LP, PN15 LP, FIX4 LP, _4_1_4_0 LP, _8_1_8_0 LP, _16_1_16_0 LP, _32_1_32_0 LP, _64_1_64_0 LP	PN15 LP			enum	

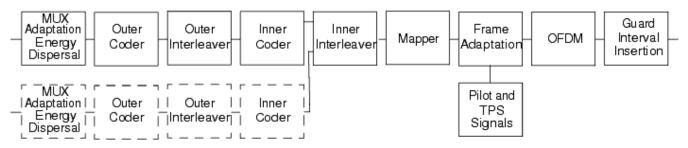

Pin Outputs

Pin	Name	Description	Signal Type
1	DVBT_signal	DVB-T signal	complex
2	HPBytes_Uncoded	information bytes of transport packet with high priority	int
3	LPBytes_Uncoded	information bytes of transport packet with low priority	int
4	HPBytes_BeforeCC	information bytes before convolutional coder with high priority	int
5	LPBytes_BeforeCC	information bytes before convolutional coder with low priority	int
6	TPS_Bits	TPS information bits	int
7	constellation	constellation signal before IFFT	complex

Notes/Equations

 This subnetwork model is used to generate the DVB-T hierarchical signal source. Each firing, one OFDM symbol is generated. The schematic for this subnetwork is shown below.

DTV_DVBTHierSignalSrc Schematic



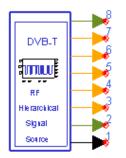
🖯 Note

To use the 8 transport MUX packet structure according to the DVB-T standard, HP_stream and LP_stream with 8 transport MUX packets can be made active (HP_stream1, LP_stream1, B2 and B3 must be made inactive). However, the signal source with 8 transport MUX packets will consume much more memory during simulation.

2. The format of the hierarchical signal source follows the DVB-T specification. The figure below shows the functional block diagram of the DVB-T baseband system.

DVB-T Baseband System Functional Block Diagram

The DTV_DVBTHierSignalSrc includes: scrambler (DTV_ScrambleByte); outer coder (DTV_RSCoder); outer interleaver (DTV_InterlvInt); inner coder (DTV_PuncConvCoder); inner interleaver (DTV_DVBTHierInnerInterlv); mapper


(DTV_Mapper); and, frame adaptation, OFDM, and guard interval insertion (in DTV_DVBTOFDMMod subnetwork).

This hierarchical signal source works per one OFDM symbol: 1705 (2K mode) or 6817 (8K mode) constellations are output. The number of samples for each OFDM symbol (DVBT_signal output pin) is:

- (1+GuardInterval)×2048×OversamplingRatio (2K mode)
- (1+GuardInterval)×8192×OversamplingRatio (8K mode)
- 3. Parameter Details
 - Mode specifies the 2K or 8K transmission mode as defined in the DVB-T specification.
 - OversamplingOption specifies the transmission signal oversampling ratio 1, 2, 4, 8, 16, 32. If OversamplingOption=2, the IFFT size is 4096 (2K mode) or 16384 (8K mode).
 - GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. Guard interval types 1/4, 1/8, 1/16 and 1/32 are defined in the DVB-T specification. GuardInterval can be set to any value between 0.0 and 1.0 (not just 1/4, 1/8, 1/16 and 1/32). For proper demodulation, the value must match the guard interval length actually used in the input signal.
 - CodeRateHP specifies the high priority stream code rate: 1/2, 2/3, 3/4, 5/6 or 7/8.
 - CodeRateLP specifies the low priority stream code rate: 1/2, 2/3, 3/4, 5/6 or 7/8.
 - MappingMode specifies the DVB-T hierarchical signal source constellations: 16-QAM or 64-QAM.
 - Alpha is used for signal constellation and mapping (based on MappingMode).
 - If Alpha=1, uniform mapping of 16-QAM or 64-QAM is used.
 - If Alpha=2 or 4, non-uniform mapping of 16-QAM or 64-QAM is used as defined in DVB-T specification.
 - For the DataTypeHP parameter:
 - if PN9 HP is selected, a 511-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.153
 - if PN15 HP is selected, a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151
 - if FIX4 HP is selected, a zero-stream is generated
 - if x_1_x_0 HP is selected (x equals 4, 8, 16, 32, or 64) a periodic bit stream is generated, with the period being 2x. In one period, the first x bits are 1s and the second x bits are 0s.
 - For the DataTypeLP parameter:
 - if PN9 LP is selected, a 511-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.153
 - if PN15 LP is selected, a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151
 - if FIX4 LP is selected, a zero-stream is generated
 - if x_1_x_0 is selected (x equals 4, 8, 16, 32, or 64) a periodic bit stream is generated, with the period being 2x. In one period, the first x bits are 1s and the second x bits are 0s.

Advanced Design System 2011.01 - DTV Design Library 1. ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTHierSignalSrc_RF

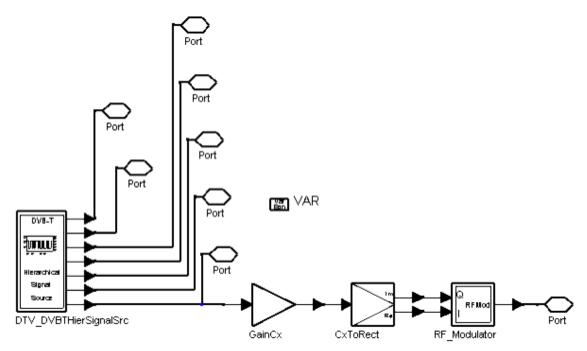
Description: DVB-T RF hierarchical signal source **Library:** DTV, DVB-T **Class:** TSDFDTV_DVBTHierSignalSrc_RF

Parameters

Advanced Design System 2011.01	- DTV Design Library
--------------------------------	----------------------

Name	Description	Default	Symbol	Unit	Туре	Range
ROut	output resistance	DefaultROut		Ohm	real	(0,∞)
RTemp	physical temperature, in degrees C	DefaultRTemp		Celsius	real	[- 273.15, ∞)
Noise	Enable thermal noise?: NO, YES	NO			enum	
FCarrier	carrier frequency	474.0MHz		Hz	real	(0, ∞)
Power	modulator output power	40mW		W	real	(0, ∞)
Bandwidth	bandwidth	(2048/224.0)MHz		Hz	real	(0, ∞)
MirrorSpectrum	rrorSpectrum Mirror spectrum about carrier?: NO, NO YES				enum	
GainImbalance	Gain imbalance, Q vs I	0.0		dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0		deg	real	(-∞, ∞)
I_OriginOffset	I origin offset (percent)	0.0			real	(-∞, ∞)
Q_OriginOffset	Q origin offset (percent)	0.0			real	(-∞, ∞)
IQ_Rotation	IQ rotation	0.0		deg	real	(-∞, ∞)
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode			enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S		enum	
GuardInterval	guard interval (frac FFT size)	0.125			real	[0, 1]
CodeRateHP	high priority stream current code rate: HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8	HP 1/2			enum	
CodeRateLP	low priority stream current code rate: LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8	LP 1/2			enum	
MappingMode	signal consetllaions and mapping: QAM-16, QAM-64	QAM-16			enum	
Alpha	non-uniform factor for DVB-T.	1			int	[1,∞)
DataTypeHP	Payload data type with high priority: PN9 HP, PN15 HP, FIX4 HP, _4_1_4_0 HP, _8_1_8_0 HP, _16_1_16_0 HP, _32_1_32_0 HP, _64_1_64_0 HP	PN9 HP			enum	
DataTypeLP Payload data type with low priority: PN9 LP, PN15 LP, FIX4 LP, _4_1_4_0 LP, _8_1_8_0 LP, _16_1_16_0 LP, _32_1_32_0 LP, _64_1_64_0 LP		PN15 LP			enum	

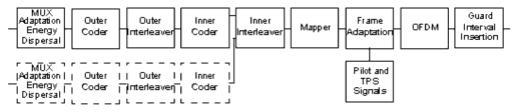
Pin Outputs


Advanced	Design	System	2011.01	- DTV	Design	Library
Auvanceu	Design	System	2011.01	- DIV	Design	Library

Pin	Name	Description	Signal Type
1	RF_signal	RF signal	timed
2	DVBT_signal	DVB-T signal	complex
3	HPBytes_Uncoded	information bytes of transport packet with high priority	int
4	LPBytes_Uncoded	information bytes of transport packet with low priority	int
5	HPBytes_BeforeCC	information bytes before convolutional coder with high priority	int
6	LPBytes_BeforeCC	information bytes before convolutional coder with low priority	int
7	TPS_Bits	TPS information bits	int
8	constellation	constellation signal before IFFT	complex

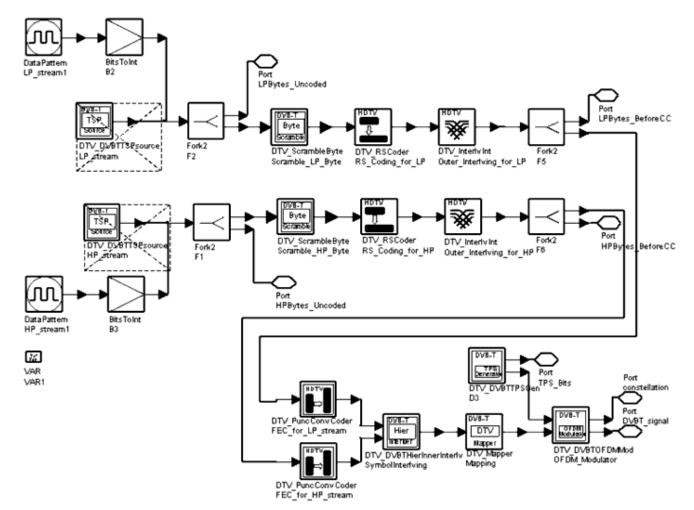
Notes/Equations

1. This subnetwork model integrates an RF modulator and a baseband hierarchical signal source based on the DVB-T specification. The baseband hierarchical signal is fed to the RF modulator; after RF modulation the timed signal is output. The schematic for this subnetwork is shown below.


DTV_DVBTHierSignalSrc_RF Schematic

2. The format of DVB-T signal source follows the DVB-T specification. The figure below is a functional block diagram of a DVB-T baseband system.

DVB-T Baseband System Block Diagram


Advanced Design System 2011.01 - DTV Design Library

 The schematic for the hierarchical signal source is shown in <u>DTV_DVBTHierSignalSrc</u> <u>Schematic</u>. The DTV_DVBTHierSignalSrc includes: scrambler (DTV_ScrambleByte); outer coder (DTV_RSCoder); outer interleaver (DTV_InterlvInt); inner coder (DTV_PuncConvCoder); inner interleaver (DTV_DVBTHierInnerInterlv); mapper (DTV_Mapper); and, frame adaptation, OFDM, and guard interval insertion (in DTV_DVBTOFDMMod subnetwork).

\rm Note

To use the 8 transport MUX packet structure, HP_stream and LP_stream with 8 transport MUX packets must be active, and HP_stream1, LP_stream1, B2, and B3 must be inactive. A signal source with 8 transport MUX packets will consume more memory during simulation.

DTV_DVBTHierSignalSrc Schematic

This hierarchical signal source works per each OFDM symbol: 1705 (2K mode) or 6817 (8K mode) constellations are output. DVBT_signal pin outputs samples for each OFDM symbol:

Advanced Design System 2011.01 - DTV Design Library

- (1+GuardInterval)×2048×OversamplingRatio (2K mode)
- (1+GuardInterval)×8192×OversamplingRatio (8K mode)
- 4. Parameter Details

FCarrier defines the RF frequency for the DVB signal.

Power defines the power level for FCarrier.

Bandwidth indicates signal band width.

MirrorSpectrum (when set to YES) conjugates the input signal before any other processing is done.

The GainImbalance, PhaseImbalance, I_OriginOffset, Q_OriginOffset, and IQ_Rotation parameters add certain impairments to the ideal output RF signal. Impairments are added in the order described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

$$V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin\left(\omega_{c}t + \frac{\phi\pi}{180}\right)\right)$$

where A is a scaling factor that depends on the Power and ROut parameters specified by the user, $V_1(t)$ is the in-phase RF envelope, $V_2(t)$ is the quadrature phase RF

envelope, g is the gain imbalance

GainImbalance

g = 10

and, Φ (in degrees) is the phase imbalance.

The signal $V_3(t)$ is rotated by IQ_Rotation degrees; I_OriginOffset and Q_OriginOffset

are then applied to the rotated signal. Note that the amounts specified are percentages with respect to the output rms voltage. The output rms voltage is given by sqrt(2×ROut×Power).

Mode specifies the 2K or 8K transmission mode as defined in the DVB-T specification. OversamplingOption specifies the transmission signal oversampling ratio 1, 2, 4, 8, 16, 32. If OversamplingOption=2, the IFFT size is 4096 (2K mode) or 16384 (8K mode).

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. Guard interval types 1/4, 1/8, 1/16 and 1/32 are defined in the DVB-T specification. GuardInterval can be set to any value between 0.0 and 1.0 (not just 1/4, 1/8, 1/16 and 1/32). For proper demodulation, the value must match the guard interval length actually used in the input signal.

CodeRateHP specifies the high priority stream code rate: 1/2, 2/3, 3/4, 5/6 or 7/8. CodeRateLP specifies the low priority stream code rate: 1/2, 2/3, 3/4, 5/6 or 7/8. MappingMode specifies signal constellation and mapping modes: 16-QAM or 64-QAM. Alpha is used for signal constellation and mapping as defined in DVB-T specifications. If Alpha=1, 16-QAM or 64-QAM uniform mapping is performed; if Alpha=2 or 4, 16-QAM or 64-QAM in non-uniform mapping is performed. For the DataTypeHP parameter:

if PN9 is selected, a 511-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.153.

if PN15 is selected, a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151.

if FIX4 is selected, a zero-stream is generated.

Advanced Design System 2011.01 - DTV Design Library if $x_1_x_0$ is selected, where x equals 4, 8, 16, 32, or 64, a periodic bit stream is generated, with the period being 2x. In one period, the first x bits are 1s and the second x bits are 0s.

For the DataTypeLP parameter:

if PN9 is selected, a 511-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.153.

if PN15 is selected, a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151.

if FIX4 is selected, a zero-stream is generated.

if $x_1_x_0$ is selected, where x equals 4, 8, 16, 32, or 64, a periodic bit stream is generated, with the period being 2x. In one period, the first x bits are 1s and the second x bits are 0s.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTImpulseNoise

Description: Impulse interference Noise **Library:** DTV, DVB-T **Class:** TSDFDTV_DVBTImpulseNoise

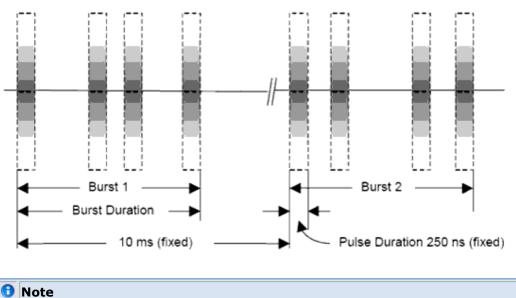
Parameters

Name	Description	Default	Unit	Туре	Range
Test_No	test mode: Test_No_1, Test_No_2, Test_No_3, Test_No_4, Test_No_5, Test_No_6	Test_No_3		enum	
NoisePower	power of impulse interference noise	1.0W	W	real	(-∞, ∞)
TStep	time step	0.19375usec	sec	real	(0,∞)
FCarrier	carrier frequency	474.0MHz	Hz	real	(0,∞)
RefR	resistance	500hm	Ohm	real	(0,∞)

Pin Outputs

Pin	Name	Description	Signal Type
1	Impulse_Interfence	impulse interference noise	timed

Notes/Equations


1. This model generates an impulse interference typically caused by automotive ignition systems, domestic appliance switches, and electric motors. The impulse interference consists of a number of bursts that are generated by gating a Gaussian noise source of power P.

The schematic for this impulse noise generator is shown below.

DTV_DVBTImpulseNoise Schematic

Advanced Design System 2011.01 - DTV Design Library

2. The impulse noise test signal is shown below. In this figure, the separation of bursts is fixed at 10 msec and pulse duration is fixed at 250 nsec.

Impulse Noise Test Signal

This model supports fixed spacing between pulses instead of variable spacing described in 11.13.3 of <u>Reference [1]</u>. Fixed spacing is dependent on test types detailed in <u>note 3</u>.

3. This model supports 6 tests in which the number of pulses per burst and pulse spacing vary according to Test_No as listed in the table below.

Impulse Noise Tests and Pulse Parameters

Test_No	Pulses per Burst	Pulse Spacing (µ sec)	Burst Duration (µ sec)
1	1	0.25	0.25
2	2	20	40
3	4	20	80
4	12	12	144
5	20	1.5	30
6	40	0.75	30

Advanced Design System 2011.01 - DTV Design Library

Noise power is the Gaussian noise power that is gated by pulses. It can be measured by closing the Rect pulse generators R1, R2, R3 in <u>DTV_DVBTImpulseNoise</u> <u>Schematic</u>.

References

1. DTG RF Sub-Group Document No.67, chapter 11.

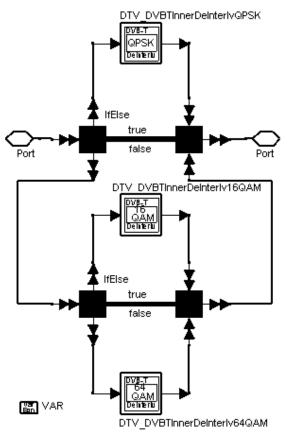
DTV_DVBTInnerDeInterlv

Description: Inner de-interleaver for QPSK, 16QAM and 64QAM non-hierarchical transmission modes **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTInnerDeInterlv

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode		enum	
MappingMode	signal constellations and mapping: QPSK, QAM-16, QAM-64	QAM-16		enum	

Pin Inputs


Pin	Name	Description	Signal Type
1	Symbols	input of inner de-interleaver	anytype
Pin	Outputs		

Pin	Name	Description	Signal Type
2	Bits	output bit stream of inner de-interleaver	anytype

Notes/Equations

1. This subnetwork model performs inner de-interleaving QPSK, 16QAM and 64QAM non-hierarchical transmission modes. Functions are performed by an if-else structure. The schematic for this subnetwork is shown below.

DTV_DVBTInnerDeInterlv Subnetwork

- 2. The Mode parameter is used to specify the 2K mode or the 8K mode.
- 3. The MappingMode parameter is used to specify QPSK, QAM-16 or QAM-64.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTInnerInterlv

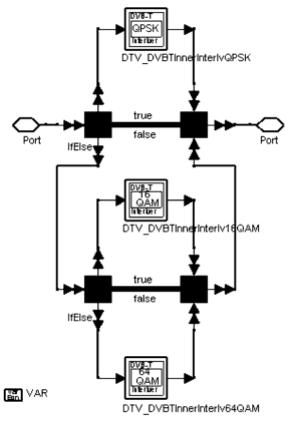
Description: Inner interleaver for QPSK, 16QAM, 64QAM non-hierarchical transmission modes **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTInnerInterlv

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode		enum	
MappingMode	signal constellations and mapping: QPSK, QAM-16, QAM-64	QAM-16		enum	

Pin Inputs

Pin	Name	Description	Signal Type		
1	Bits	Bit stream prior to inner interleaver	anytype		
Din Outpute					

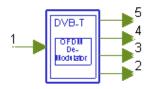

Pin Outputs

Pin	Name	Description	Signal Type
2	Symbols	output of inner interleaver	anytype

Notes/Equations

1. This subnetwork model performs inner interleaving QPSK, 16QAM and 64QAM. Functions are performed by an if-else structure. The schematic for this subnetwork is shown below.

DTV_DVBTInnerInterlv Schematic



- 2. The Mode parameter is used to specify the 2K mode or the 8K mode.
- 3. The MappingMode parameter is used to specify QPSK, QAM-16 or QAM-64.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTOFDMDemod

Description: DVB-T OFDM de-modulator **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTOFDMDemod

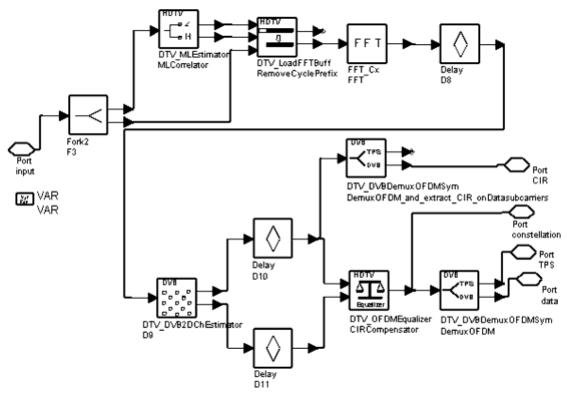
Parameters

Name	Description	Default	Symbol	Unit Type	Range
	transmission mode: DVB 2k mode, DVB 8k mode, DVB 4k mode	DVB 2k mode		enum	
	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S	enum	
GuardInterval	guard interval (frac FFT size)	1/32		real	[0, 1]

Pin Inputs

Pin	Name	Description	Signal Type
1	input	received OFDM symbol	complex

Pin Outputs


Pin	Name	Description	Signal Type
2	data	information on data subcarriers	complex
3	TPS	information on TPS subcarriers	complex
4	CIR	estimated channel impulse response on data subcarriers	complex
5	Constellation	demodulated constellation on all active subcarriers	complex

Notes/Equations

1. This subnetwork model implements OFDM demodulation for DVB-T. The schematic for this subnetwork is shown below.

DTV_DVBTOFDMDemod Schematic

Advanced Design System 2011.01 - DTV Design Library

- 2. The data, TPS, and constellation output pins correspond to DTV_DVBTOFDMMod pins; the CIR pin outputs the estimated channel impulse response of each data subcarrier, which is used as channel status information in the soft Viterbi decoding algorithm. Each firing, the input pin consumes (1+GuardInterval)×2048×OversamplingRatio of 2K mode, (1+GuardInterval)×4096×OversamplingRatio of 4K mode, or (1+GuardInterval)×8192×OversamplingRatio of 8K mode tokens. The data and CIR pins output 1512 (2K mode), 3024 (4K mode), or 6048 (8K mode) complex signals; the constellation pin outputs 1705 (2K mode), 3049 (4K mode), or 6817 (8K mode) demodulated complex signals; the TPS pin outputs one received TPS signal. DTV_DVBTOFDMDemod has a delay of 8 OFDM symbols when the received OFDM signal is demodulated; so, the output tokens for the first 8 OFDM symbols in each output pin should be discarded.
- 3. De-multiplex demodulated subcarriers into TPS, data, and pilots (continual and scattered).

<u>Frame Structure</u> shows the frame structure. IntState of Length determines the number of CP (continual pilot) and TPS in each symbol; CP and TPS positions are determined according to <u>Carrier Indices for Continual Pilot Carriers</u> and *Carrier Indices for TPS Carriers*, respectively.

PRBS sequences in each segment are generated according to <u>PRBS Sequence</u> <u>Generation</u>; the initial PRBS register setting is 111111111111. The PRBS in initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on each carrier in each segment (whether or not it is a pilot).

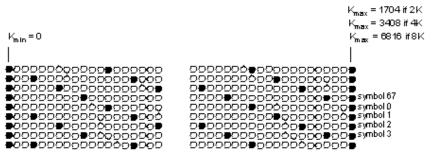
Positions of the corresponding scattered pilots are generated as follows. For the symbol of index *l* (ranging from 0 to 67), carriers for which index *k* belongs to subset $\{k = K_{min} + 3 \times l \mod 4 + 12p | p \text{ integer}, p \ge 0, k \in [K_{min}, K_{max}]\}$

are scattered pilots positions.

where *p* is an integer that takes all possible values ≥ 0 , provided the resulting value for *k* does not exceed the valid range [K_{min}, K_{max}]; K_{min} = 0, and K_{max} = 1705 (2K

Advanced Design System 2011.01 - DTV Design Library mode), K_{max} = 3409 (4K mode), or 6817 (8K mode). SPperiod, SPstart, SPoffset,

and SPphase parameters control the scattered pilots positions.


After determining the CP, TPS, and SP positions in each symbol and the value of the PRBS sequence in all active carriers in the symbol, this subnetwork demultiplexes input data into TPS and TSP data. According to the TPS position and the PRBS sequence, one transmitted TPS bit is determined by the mean value of the TPS positions.

$$TPS = \frac{1}{NTPS} \sum_{l=1}^{NTPS} \frac{x[TPSposition[l]]}{PilotValue[TPSposition[l]]}$$

where *NTPS* is the number of TPS in one symbol; *PilotValue* is the PRBS sequence in symbol; *x*[*i*] is the input data.

The other positions (other than TPS, CP, and SP) in one segment are the TSP data positions.

Data[i] = x[i]

🖶 boosted pilot

Odata

TPS pilots and continual pilots between $\,K_{\!mln}$ and $\,K_{\!max}$ are not shown

Frame Structure

Carrier Indices for Continual Pilot Carriers

Advanced Design System 2011.01 - DTV Design Library

Continual pilot	Continual pilot carrier positions (index number k)				
2K mode	4K mode	8K mode			
0 48 54 87 1410 48 54 87 141 156 192 201156 192 201255 279 282 333 432 450 483255 279 282525 531 618 636 714 759 765333 432 450780 804 873 888 918 939 942483 525 531969 984 1050 1101 1107 1110618 636 7141137 1140 1146 1206 1269759 765 7801323 1377 1491 1683 1704804 873 8881752 1758 1791 1845 1860918 939 9421896 1905 1959 1983 1986969 984 10502037 2136 2154 2187 22291101 11072235 2322 2340 2418 24631110 11372469 2484 2508 2577 25921140 11462622 2643 2646 2673 26881206 12692754 2805 2811 28141323 137728412844 2850 2910 29731491 16833027 3081 3195 3387 34081704					
2K mode	4K mode	8K mode			
34 50 209 34634 50 209 346 413 569 595413 569 595688 790 901 1073 1219688 790 9011262 1286 1469 1594 16871073 12191738 1754 1913 2050 21171262 12862273 2299 2392 2494 26051469 15942777 2923 2966 2990 317316873298 3391		34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687 1738 1754 1913 2050 2117 2273 2299 2392 2494 2605 2777 2923 2966 2990 3173 3298 3391 3442 3458 3617 3754 3821 3977 4003 4096 4198 4309 4481 4627 4670 4694 4877 5002 5095 5146 5162 5321 5458 5525 5681 5707 5800 5902 6013 6185 6331 6374 6398 6581 6706 6799			
		1 1 1 1 1-bit 1-bit 1-bit 1-bit dolay dolay dolay dolay			

PRBS Sequence Generation

4. Parameter Details

Mode is used to select transmission 2K, 4K, or 8K mode as defined in DVB-T. OversamplingOption indicates the oversampling ratio of transmission signal. Oversampling ratios 1, 2, 4, 8, 16, 32 are supported. If OversamplingOption=Ratio 2, the IFFT size is 4096 (2K mode), 8192 (4K mode), or 16384 (8K mode). GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the proper demodulation.

References

1. ETSI, Digital Video Broadcasting (DVB) ; Framing structure, channel coding and modulation for digital terrestrial television . EN300 744 v1.5.1, European

Advanced Design System 2011.01 - DTV Design Library Telecommunication Standard, November 2004.

DTV_DVBTOFDMMod

Description: DVB-T OFDM modulator **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTOFDMMod

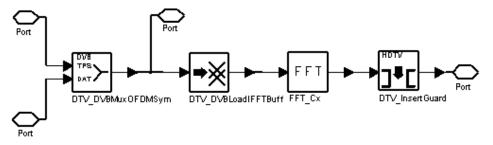
Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
	transmission mode: DVB 2k mode, DVB 8k mode, DVB 4k mode	DVB 2k mode			enum	
	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S		enum	
GuardInterval	guard interval (frac FFT size)	1/32			real	[0, 1]

Pin Inputs

1 Data data subcarriers complex	Pin	Name	Description	Signal Type
2 TPS TPS signals complex	1	Data	data subcarriers	complex
2 ITO TTO Signals Complex	2	TPS	TPS signals	complex

Pin Outputs


Pin	Name	Description	Signal Type
3	Signal	OFDM symbol	complex
4	Constellation	mapping signal before OFDM modulation	complex

Notes/Equations

1. This subnetwork model implements OFDM modulation for DVB-T. The schematic for this subnetwork is shown below.

DTV_DVBTOFDMMod Schematic

Advanced Design System 2011.01 - DTV Design Library

🔛 VAR

DTV_DVBMuxOFDMSym multiplexes TPS, data, and pilots (continual and scattered) into one OFDM symbol in the frequency domain and outputs (at the constellation pin) 1705 (2K mode), 3409 (4K mode), or 6817 (8K mode) subcarriers each firing. DTV_DVBLoadIFFTBuff loads transmission data (1705, 3409, or 6817) into the IFFT buffer and inserts zeros into the other subcarriers. After IFFT, the frequency domain signals are converted into the time domain.

DTV_InsertGuard inserts a cyclic prefix as the guard interval before the IFFT signal. One OFDM symbol is then generated.

Each firing: TPS pin consumes one input token; the data pin fires 1512 (2K mode), 3024 (4K mode), or 6048 (8K mode) input tokens; constellation pin outputs (1705 or 6817) mapping signals and signal pin output

(1+GuardInterval)×2048×OversamplingRatio (2K mode),

(1+GuardInterval)×4096×OversamplingRatio (4K mode)

(1+GuardInterval)×8192×OversamplingRatio (8K mode) complex signals.

2. Multiplex TPS, data and pilots (continual pilots and scattered pilots)

The OFDM frame structure is shown in <u>Frame Structure</u>. The number of IntState of Length determines the number of CP (continual pilot) and TPS in each symbol; the CP and TPS positions are determined according to <u>Carrier Indices for Continual Pilot</u> <u>Carriers</u> and <u>Carrier Indices for TPS Carriers</u>, respectively.

PRBS sequences in each segment are generated according to <u>PRBS Sequence</u> <u>Generation</u>; the initial sets of PRBS register is 11111111111. The PRBS in initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on each carrier in each segment (whether or not it is a pilot).

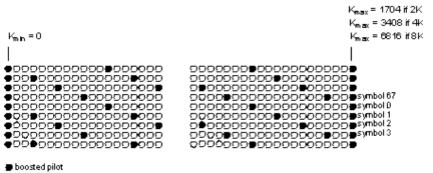
Positions of the corresponding scattered pilots are generated as follows. For the symbol of index *I* (ranging from 0 to 67), carriers for which index *k* belongs to subset $\{k = K_{min} + 3 \times l \mod 4 + 12p | p \text{ integer}, p \ge 0, k \in [K_{min}, K_{max}]\}$

are scattered pilot positions

where *p* is an integer that takes all possible values ≥ 0 , provided the resulting value for *k* does not exceed the valid range [K_{min}, K_{max}]; K_{min} = 0, and K_{max} = 1705 (2K

mode), 3409 (4K mode), or 6817 (8K mode). SPperiod, SPstart, and SPoffset parameters control the scattered pilots positions.

After determining the CP, TPS, and SP positions in each symbol and the value of the PRBS sequence in all active carriers in one symbol, the model demultiplexes the input data into TPS and TSP data. According to the TPS position and the PRBS sequence, one TPS bit is output in each TPS position.


 $x[TPS position[l]] = PilotValue[TPS position[l]] \times TPS$

where *NTPS* is the number of TPS in one symbol; *PilotValue* is the PRBS sequence in symbol; x[i] is the OFDM symbol data.

Except for TPS, CP, and SP positions, the remaining positions in one segment are the

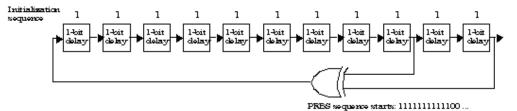
TSP data positions. x[i] = Data[i]

Frame Structure

⊖data

TPS pilots and continual pilots between K_{min}and K_{max} are not shown

Carrier Indices for Continual Pilot Carriers


Continual pilot carrier positions (index number k)				
2K mode	4K mode	8K mode		
0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377 1491 1683 1704	0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377 1491 1683 1704 1752 1758 1791 1845 1860 1896 1905 1959 1983 1986 2037 2136 2154 2187 2229 2235 2322 2340 2418 2463 2469 2484 2508 2577 2592 2622 2643 2646 2673 2688 2754 2805 2811 2814 28412844 2850 2910 2973 3027 3081 3195 3387 3408	0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525 531 618 636 714 759 765 780 804 873 888 918 939 942 969 984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377 1491 1683 1704 1752 1758 1791 1845 1860 1896 1905 1959 1983 1986 2037 2136 2154 2187 2229 2235 2322 2340 2418 2463 2469 2484 2508 2577 2592 2622 2643 2646 2673 2688 2754 2805 2811 2814 28412844 2850 2910 2973 3027 3081 3195 3387 3408 3456 3462 3495 3549 3564 3600 3609 3663 3687 3690 3741 3840 3858 3891 3933 3939 4026 4044 4122 4167 4173 4188 4212 4281 4296 4326 4347 4350 4377 4392 4458 4509 4515 4518 4545 4548 4554 4614 4677 4731 4785 4899 5091 5112 5160 5166 5199 5253 5268 5304 5313 5367 5391 5394 5445 5544 5562 5595 5637 5643 5730 5748 5826 5871 5877 5892 5916 5985 6000 6030 6051 6054 6081 6096 6162 6213 6219 6222 6249 6252 6258 6318		

Carrier Indices for TPS Carriers

Advanced	Design	System	2011.01	- DTV	Design Library

2K mode 4K mode	8K mode
1073 12191738 1754 1913 2050 21171262 12862273 2299 2392 2494 26051469 15942777 2923 2966 2990 317316873298 3391	34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469 1594 1687 1738 1754 1913 2050 2117 2273 2299 2392 2494 2605 2777 2923 2966 2990 3173 3298 3391 3442 3458 3617 3754 3821 3977 4003 4096 4198 4309 4481 4627 4670 4694 4877 5002 5095 5146 5162 5321 5458 5525 5681 5707 5800 5902 6013 6185 6331 6374 6398 6581 6706 6799

PRBS Sequence Generation

3. Parameter Details

Mode specifies the 2K or 8K transmission mode as defined in DVB-T.

OversamplingOption specifies the oversampling ratio of transmission signal: 1, 2, 4, 8, 16, or 32. For example, if OversamplingOption = Ratio 2, the IFFT size is 4096 (2K mode) or 16384 (8K mode).

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. For proper demodulation, the value must match the guard interval length that is actually used in the input signal.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTPS

Description: Transmission parameter signal information bits **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTPS

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of TPS information bits	54		int	{54}
InitiBit	initialization bit for DBPSK modulation (1 bit)	1		int	{0,1}
Sync	synchronization word (16 bits): W0, W1	W0		enum	
LengthIndicator	TPS length indicator (6 bits)	010111		int array	"0 1 0 1 1 1"
FrameNumber	frame number in one super frame (2 bits): F1, F2, F3, F4	F1		enum	
Constellation	modulation scheme in DVB-T (2bits): QPSK, QAM 16, QAM 64, reserved M	QPSK		enum	
HierarchyInform	signaling format for alpha values (3 bits): Non hierarchical, alpha 1, alpha 2, alpha 4, reserved H1, reserved H2, reserved H3, reserved H4	Non hierarchical		enum	
CodeRateHP	high priority stream current code rate (3 bits): HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8, Reserved C1 HP, Reserved C2 HP, Reserved C3 HP	HP 1/2		enum	
CodeRateLP	low priority stream current code rate (3 bits): LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8, Reserved C1 LP, Reserved C2 LP, Reserved C3 LP	LP 1/2		enum	
GuardInterval	guard interval values (2 bits): G 1/32, G 1/16, G 1/8, G 1/4	G 1/32		enum	
TransmissionMode	transmission mode (2 bits): mode 2k, mode 8k, reserved T1, reserved T2	mode 2k		enum	
FutureUse	reserved for future use (currently, all 14 bits are set to 0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		int array	

Pin Outputs

Pin	Name	Description	Signal Type
1	output	TPS information bits	int
2	initial	initial bit for differential modulation	int

Notes/Equations

1. This model generates 54 bits of TPS information; refer to the table below for bit assignments.

PS Signal Information and Format

Bit No.	Format	Purpose/Content
<i>S</i> ₀		Initialization bit for differential 2_PSK modulation
$S_1 - S_{16}$	0011010111101110 or 1100101000010001	Synchronization word
S ₁₇ – S	010 111	Length indicator
22		
S ₂₃ – S	See Signal Format for Frame Number	Frame number
24		
S ₂₅ – S	See Signal Format for Possible Constellation	Constellation
26	Patterns	
S ₂₇ – S	See Signal Format for a Values	Hierarchy information
29		
S ₃₀ – S	See Signal Format for Each Code Rate	Code rate, HP stream
32		
S ₃₃ – S	See Signal Format for Each Code Rate	Code rate, LP stream
35		
S ₃₆ – S	See Signal Format for Each Guard Interval	Guard interval
37		
S ₃₈ – S	See Signal Format for Transmission Mode	Transmission mode
39		
S ₄₀ – S	all set to 0	Reserved for future use
52		
S ₅₄ – S	BCH code	Error protection
66		

Signal Format for Frame Number

Bits S ₂₃ – S ₂₄	Frame Number
00	Frame number 1 in the super-frame
01	Frame number 2 in the super-frame
10	Frame number 3 in the super-frame
11	Frame number 4 in the super-frame

Signal Format for Possible Constellation Patterns

Bits S ₂₅ – S ₂₆	Constellation Characteristics
00	QPSK
01	16-QAM
10	64-QAM
11	reserved

Signal Format for a Values

Bits S ₂₇ – S ₂₉	α Value
000	Non-hierarchical
001	a = 1
010	a = 2
011	a = 3
100	reserved
101	reserved
110	reserved
111	reserved

Signal Format for Each Code Rate

Bits S ₃₀ – S ₃₂ HP stream S ₃₃ – S ₃₅ LP stream	Code Rate
000	1/2
001	2/3
010	3/4
011	5/6
100	7/8
101	reserved
110	reserved
111	reserved

Signal Format for Each Guard Interval

Bits S ₃₆ – S ₃₇	Guard Interval Values
00	1/32
01	1/16
10	1/8
11	1/4

Signal Format for Transmission Model

Bits S ₃₈ – S ₃₉	Transmission Mode
00	2K mode
01	8K mode
10	reserved
11	reserved

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTPSDemod

Description: Transmission parameter signal differential demodulation **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTPSDemod

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of TPS bits per OFDM frame	68		int	68

Pin Inputs

Pin	Name	Description	Signal Type
1	input	TPS information (68 bits)	complex

Pin Outputs

Pin	Name	Description	Signal Type
2	output	demodulated TPS information	int
3	init	demodulated initial bit for TPS DBPSK demodulation	int

Notes/Equations

- 1. The model performs DBPSK demodulation for 68 complex signals about the received transmission parameter signal.
- 2. A hard decision value is made on the real part of the complex input signal.

$$B'[i] = 0$$
 if $Re\{x[i]\} > 0$
 $B'[i] = 1$ if $Re\{x[i]\} < 0$

where

 $0 \leq i < 68.$

Then set $B_0 = B'[0]$. DBPSK demodulation is:

 $B_i = B'[i] \oplus B'[i-1]$

where

 $i = 1, 2, \dots, 67.$

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTPSMod

Description: Transmission parameter signal differential modulation **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTPSMod

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of TPS bits per OFDM frame	68		int	68

Pin Inputs

Pin	Name	Description	Signal Type
1	input	TPS information (67 bits)	int
2	initial	initial bit for TPS DBPSK modulation	int

Pin Outputs

Pin	Name	Description	Signal Type
3	output	modulated TPS information	complex

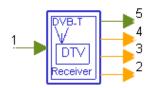
Notes/Equations

- 1. The model performs DBPSK modulation for transmission parameter signal information.
- 2. Implementation First, set, $B'[0] = B_0$. DBPSK modulation is

$$B'[i] = B_i \oplus B'[i-1]$$

where
$$i = 1, 2, ..., 67$$
.
Then

$$\begin{cases}
x[i] = 1 + j0 & if \quad (B'[i] = 0) \\
x[i] = -1 + j0 & if \quad (B'[i] = 1)
\end{cases}$$


coded bits B'[0]" B'[67] are converted to (1,0), (-1,0) where

$$i = 0, 1, \dots, 67.$$

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTReceiver

Description: DVB-T receiver **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTReceiver

Parameters

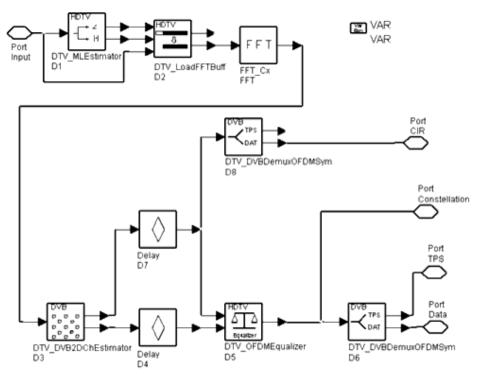
Name	Description	Default	Symbol	Unit	Туре	Range
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode			enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S		enum	
GuardInterval	guard interval (frac FFT size)	0.125			real	[0, 1]
CodeRate	code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2			enum	
MappingMode	signal constellations and mapping: QPSK, QAM- 16, QAM-64	QAM-16			enum	
SoftDecision	soft decision viterbi decoding type: Soft, Hard, Cochannel	Soft			enum	
TrunLen	path memory truncation length of Viterbi decoding algorithm, in bytes	10			int	[5,∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	Rx_signal	received OFDM signal to be demodulated	complex

Pin Outputs

Pin	Name	Description	Signal Type
2	Bytes_Decoded	decoded bytes after Reed Solomon decoder	int
3	Bytes_AfterViterbi	decoded bytes after Viterbi decoder	int
4	TPS_Bits	decoded TPS information bits	int
5	constellation	constellation signal after OFDM demodulation	complex


Notes/Equations

1. This subnetwork model implements the DVB-T receiver function. The schematic for this subnetwork is shown below.

- 2. Output Delays
 - The constellation pin has one OFDM symbol delay. The first 8 \times 1705 (2K mode) or 8 \times 6817 (8K mode) constellation output signals not used for EVM calculation.
 - DTV_BCHDecoder works a 68-bit block; so, a Delay component with N=60 is inserted before DTV_DVBTPSDemod. TPS_Bits has a one DVB-T frame (68 OFDM symbols) delay; the first 53 bits are not used.
 - The information bytes per one OFDM symbol in Bytes_AfterViterbi can be calculated as follows:
 - CodedBlockSize=204
 - CodeRate = 1/2, 2/3, 3/4, 5/6 or 7/8,
 - InfoBytes=DelayOFDMSymbols×DataPerOFDMSymbol×CodeRate/8
 - DelayOFDMSymbols = 8
 - The block delay of Bytes_AfterViterbi is BlockDelay_AfterViterbi and can be calculated, as follows:
 - DelayBytes=DelayOFDMSymbols×InfoBytes-(int(DelayOFDMSymbols ×InfoBytes/CodedBlockSize))×CodedBlockSize,
 - N=int((TrunLen+DelayBytes)/CodedBlockSize),
 - BlockDelay_AfterViterbi=
 - 1+int((DelayOFDMSymbols×InfoBytes)/CodedBlockSize)+N.
 - The block size is 204 bytes, N is used when the sum of TrunLen and DelayBytes is more than one block length.
 - The Bytes_Decoded pin has 11 extra transport MUX packet delays.
 - The block delay of Bytes_Decoded is
 - BlockDelay_Decoded=
 - 1+int((DelayOFDMSymbols×InfoBytes)/CodedBlockSize)+N.
 - The block size is 188 bytes.
- Receiver functions are implemented according to the DVB-T Standard. Start of OFDM symbol is detected by the DTV_DVBTOFDMDemod subnetwork (shown in below).

DTV_DVBTOFDMDemod Schematic

DTV_MLEstimator calculates the correlation based on guard interval; DTV_LoadFFTBuff selects the index with the maximum correlation value as the start of FFT.

DTV_DVBCh2DEstimator estimates the complex channel impulse responses for continual and scattered pilot subcarriers. The channel impulse responses of the data subcarriers are 2D interpolated based on the estimated CIR.

Each subcarrier value is divided with a complex estimated channel response coefficient (phase tracking, phase synchronization, and equalization). This simple one-tap frequency domain channel response compensation is implemented by DTV_OFDMEqualizer.

After equalization, DTV_DVBDemuxOFDMSym demultiplexes 1705 or 6817 subcarriers into 1512 (2K mode) or 6048 (8K mode) data subcarriers and 1 demodulated TPS.

The demodulated 1512 or 6048 data subcarriers (such as 16-QAM and 64-QAM modulation) are demapped by DTV_Demapper.

Demodulated soft bits are de-interleaved by DTV_DVBTInnerDeinterlv.

De-interleaved bits are then inner decoded (DTV_InnerDecoder), outer deinterleaved (DTV_InterlvInt), outer decoded (DTV_RSDecoder) and descrambled (DTV_ScrambleByte).

The fully decoded stream bytes are then output as Bytes_Decoded.

The partially decoded stream bytes after inner decoding are output as Bytes_AfterViterbi.

The TPS signal is demodulated by DTV_DVBTPSDemod; the demodulated bits are decoded by DTV_BCHDecoder.

The output pins of this DTV_DVBTReceiver subnetwork correspond to those of DTV_DVBTSignalSrc.

This receiver is triggered per one OFDM symbol. The number of samples of each OFDM symbol (Rx_signal input pin) is:

(1+GuardInterval)×2048×OversamplingRatio (2K mode)

Advanced Design System 2011.01 - DTV Design Library

(1+GuardInterval)×8192×OversamplingRatio (8K mode)

The number of signals at the constellation output pin is 1705 (2K mode) or 6817 (8K mode) per one OFDM symbol.

4. Parameter Details

Mode specifies the 2K or 8K transmission mode as defined in DVB-T.

OversamplingOption specifies the transmission signal oversampling ratio 1, 2, 4, 8, 16, 32. If OversamplingOption = Ratio 2, the IFFT size is 4096 (2K mode) or 16384 (8K mode).

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. Guard interval types 1/4, 1/8, 1/16 and 1/32 are defined in the DVB-T specification. GuardInterval can be set to any value between 0.0 and 1.0 (not just 1/4, 1/8, 1/16 and 1/32). For proper demodulation, the value must match the guard interval length actually used in the input signal.

CodeRate specifies the DTV code rate: 1/2, 2/3, 3/4, 5/6 or 7/8.

MappingMode specifies signal constellation and mapping modes: QPSK, QAM-16, or QAM-64.

SoftDecision specifies the Viterbi decoding algorithm mode.

If SoftDecision=Soft, the Viterbi decoding algorithm is a soft decision decoder and uses channel status information.

If SoftDecision=Hard, the Viterbi decoding algorithm is a hard decision decoder and does not use channel status information.

If SoftDecision=Cochannel, the Viterbi decoding algorithm is for co-channel measurement with PAL analog TV and digital DVB-T.

TrunLen sets the truncation length (in bytes) in the Viterbi decoding algorithm. The path memory is 8×TrunLen bits in Viterbi decoding algorithm.

References

- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.
- 2. W.C.Lee, H.M.Park, K.J.Kang, K.B.Kim, "*Performance Analysis of Viterbi Decoder Using Channel State Information in COFDM System*" IEEE TRANSACTIONS ON BROADCASTING, Vol.,44, NO.4, DECEMBER 1998.

DTV_DVBTReceiver_RF

Description: DVB-T RF receiver **Library:** DTV, DVB-T **Class:** TSDFDTV_DVBTReceiver_RF

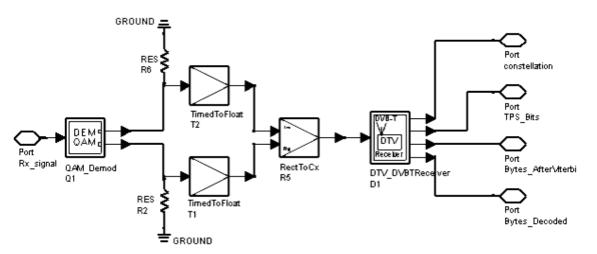
Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
RIn	input resistance	DefaultRIn		Ohm	real	(0,∞)
ROut	output resistance	DefaultROut		Ohm	real	(0,∞)
RTemp	physical temperature, in degrees C	DefaultRTemp		Celsius	real	[-273.15, ∞)
GainImbalance	Gain imbalance, Q vs I	0.0		dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0		deg	real	(-∞, ∞)
FCarrier	carrier frequency	474.0MHz		Hz	real	(0,∞)
Sensitivity	voltage output sensitivity, Vout/Vin	1			real	(-∞, ∞)
Phase	reference phase in degrees	0.0		deg	real	(-∞, ∞)
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode			enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S		enum	
GuardInterval	guard interval (frac FFT size)	0.125			real	[0, 1]
CodeRate	code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2			enum	
MappingMode	signal consetllaions and mapping: QPSK, QAM-16, QAM-64	QAM-16			enum	
SoftDecision	soft decision viterbi decoding type: Soft, Hard, Cochannel	Soft			enum	
TrunLen	path memory truncation length of Viterbi decoding algorithm, in bytes	10			int	[5,∞)

Pin Inputs

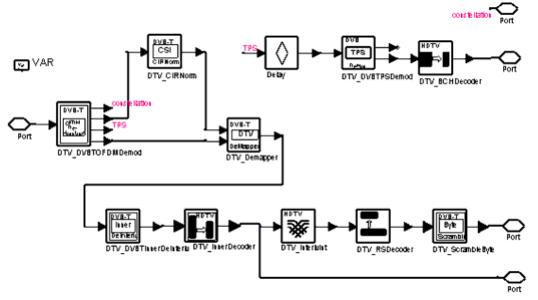
Pin	Name	Description	Signal Type
1	Rx_signal	received OFDM signal to be demodulated	timed

Pin Outputs


Advanced Design System 2011.01 - DTV Design Library

Pin	Name	Description	Signal Type
2	Bytes_Decoded	decoded bytes after Reed Solomon decoder	int
3	Bytes_AfterViterbi	decoded bytes after Viterbi decoder	int
4	TPS_Bits	decoded TPS information bits	int
5	constellation	constellation signal after OFDM demodulation	complex

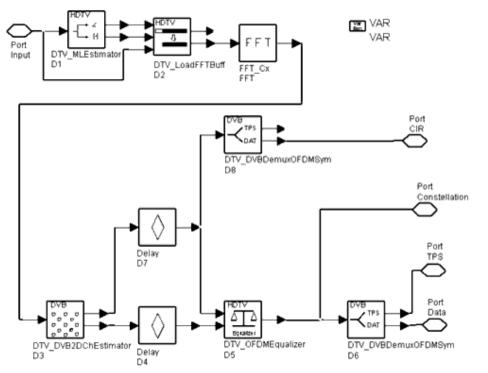
Notes/Equations


- 1. This subnetwork model implements the DVB-T RF receiver function. The received RF signal is demodulated and fed to the baseband receiver.
- 2. The schematic for this RF receiver is shown below.

DTV_DVBTReceiver_RF Schematic

3. The baseband demodulator schematic is shown below.

DTV_DVBTReceiver Schematic



- 4. Output Delays
 - The constellation pin has one OFDM symbol delay. The first 8 \times 1705 (2K mode) or 8 \times 6817 (8K mode) constellation output signals not used for EVM calculation.
 - DTV_BCHDecoder works a 68-bit block; so, a Delay component with N=60 is inserted before DTV_DVBTPSDemod. TPS_Bits has a one DVB-T frame (68 OFDM symbols) delay; the first 53 bits are not used.
 - The information bytes for one OFDM symbol in Bytes_AfterViterbi can be calculated as follows:
 - DataPerOFDMSymbol=1512 (2K mode) or 6048 (8K mode)
 - CodedBlockSize=204
 - CodeRate = 1/2, 2/3, 3/4, 5/6 or 7/8,
 - InfoBytes=DelayOFDMSymbols×DataPerOFDMSymbol×CodeRate/8
 - DelayOFDMSymbols = 8
 - The block delay of Bytes_AfterViterbi is BlockDelay_AfterViterbi and can be calculated, as follows:
 - DelayBytes=DelayOFDMSymbols×InfoBytes
 - -(int(DelayOFDMSymbols×InfoBytes/CodedBlockSize))×CodedBlockSize,
 - N=int((TrunLen+DelayBytes)/CodedBlockSize),
 - BlockDelay_AfterViterbi=1+
 - int((DelayOFDMSymbols×InfoBytes)/CodedBlockSize)+N.

The block size is 204 bytes, N is used when the sum of TrunLen and DelayBytes is more than one block length.

The block size is 204 bytes, N is used when the sum of TrunLen and DelayBytes is more than one block length.

- The Bytes_Decoded pin has 11 extra transport MUX packet delays.
- The block delay of Bytes_Decoded is
 - BlockDelay_Decoded=1+
 - int((DelayOFDMSymbols×InfoBytes)/CodedBlockSize)+N.
 - The block size is 188 bytes.
- 5. Receiver functions are implemented according to the DVB-T Standard.
- Start of OFDM symbol is detected by the DTV_DVBTOFDMDemod subnetwork (shown below).

DTV_MLEstimator calculates the correlation based on guard interval; DTV_LoadFFTBuff selects the index with the maximum correlation value as the start of FFT.

DTV_DVBCh2DEstimator estimates the complex channel impulse responses for continual and scattered pilot subcarriers. The channel impulse responses of the data subcarriers are 2D interpolated based on the estimated CIR.

Each subcarrier value is divided with a complex estimated channel response coefficient (phase tracking, phase synchronization, and equalization). This simple one-tap frequency domain channel response compensation is implemented by DTV_OFDMEqualizer.

After equalization, DTV_DVBDemuxOFDMSym demultiplexes 1705 or 6817 subcarriers into 1512 (2K mode) or 6048 (8K mode) data subcarriers and 1 demodulated TPS.

The demodulated 1512 or 6048 data subcarriers (16-QAM and 64-QAM modulation) are demapped by DTV_Demapper.

Demodulated soft bits are de-interleaved by DTV_DVBTInnerDeinterlv.

De-interleaved bits are then inner decoded (DTV_InnerDecoder), outer deinterleaved (DTV_InterlvInt), outer decoded (DTV_RSDecoder) and descrambled (DTV_ScrambleByte).

The fully decoded stream bytes are then output as Bytes_Decoded. The partially decoded stream bytes after inner decoding are output as Bytes_AfterViterbi.

The TPS signal is demodulated by DTV_DVBTPSDemod; the demodulated bits are decoded by DTV_BCHDecoder.

The output pins of this DTV_DVBTReceiver subnetwork correspond to those of DTV_DVBTSignalSrc.

This receiver is triggered at each OFDM symbol. The number of samples of each OFDM symbol (Rx_signal input pin) is:

Advanced Design System 2011.01 - DTV Design Library

(1+GuardInterval)×2048×OversamplingRatio (2K mode)

(1+GuardInterval)×8192×OversamplingRatio (8K mode)

The number of signals at the constellation output pin is 1705 (2K mode) or 6817 (8K mode) for one OFDM symbol.

6. Parameter Details

GainImbalance and PhaseImbalance add certain impairments to the ideal output RF signal. Impairments are added in the order described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

$$V_3(t) = A\left(V_1(t)\cos(\omega_c t) - gV_2(t)\sin\left(\omega_c t + \frac{\phi\pi}{180}\right)\right)$$

where $V_1(t)$ is the in-phase RF envelope, $V_2(t)$ is the quadrature phase RF envelope, g

is the gain imbalance $\frac{GainImbalance}{20}$

g = 10

and, Φ (in degrees) is the phase imbalance.

Mode specifies the 2K or 8K transmission mode as defined in DVB-T.

OversamplingOption specifies the transmission signal oversampling ratio 1, 2, 4, 8, 16, 32. If OversamplingOption=Ratio 2, the IFFT size is 4096 for 2K mode or 16384 for 8K mode.

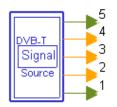
GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. Guard interval types 1/4, 1/8, 1/16 and 1/32 are defined in the DVB-T specification. GuardInterval can be set to any value between 0.0 and 1.0 (not just 1/4, 1/8, 1/16 and 1/32). For proper demodulation, the value must match the guard interval length actually used in the input signal.

CodeRate specifies the stream code rate: 1/2, 2/3, 3/4, 5/6, or 7/8. MappingMode specifies signal constellations and mapping for the DVB-T signal source. Mapping modes QPSK, 16-QAM and 64-QAM are available. SoftDecision specifies the Viterbi decoding algorithm mode.

If SoftDecision=Soft, the Viterbi decoding algorithm is a soft decision decoder and uses channel status information.

If SoftDecision=Hard, the Viterbi decoding algorithm is a hard decision decoder and does not use channel status information.

If SoftDecision=Cochannel, the Viterbi decoding algorithm is for co-channel measurement with PAL analog TV and digital DVB-T.


TrunLen is set to the truncation length in the Viterbi decoding algorithm. This parameter is set as bytes. The path memory is 8×TrunLen bits in Viterbi decoding algorithm.

TrunLen sets the truncation length (in bytes) in the Viterbi decoding algorithm. The path memory is 8×TrunLen bits in Viterbi decoding algorithm.

Advanced Design System 2011.01 - DTV Design Library

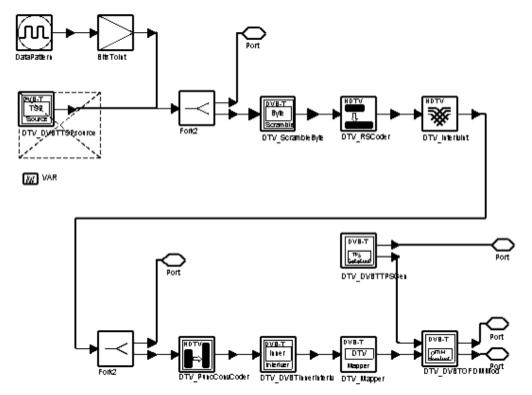
- 1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999
- 2. W.C.Lee, H.M.Park, K.J.Kang, K.B.Kim, "*Performance Analysis of Viterbi Decoder Using Channel State Information in COFDM System*" IEEE TRANSACTIONS ON BROADCASTING, Vol.,44,NO.4, DECEMBER 1998.

DTV_DVBTSignalSrc

Description: DVB-T signal source **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTSignalSrc

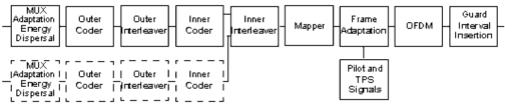
Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode			enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S		enum	
GuardInterval	guard interval (fractional FFT size)	0.125			real	[0, 1]
CodeRate	code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2			enum	
MappingMode	signal constellation and mapping: QPSK, QAM- 16, QAM-64	QAM-16			enum	
DataType	payload data type: PN9, PN15, FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0, _32_1_32_0, _64_1_64_0	PN9			enum	


Pin Outputs

Pin	Name	Description	Signal Type
1	DVBT_signal	DVB-T signal	complex
2	Bytes_Uncoded	information bytes of transport packet	int
3	Bytes_BeforeCC	information bytes before convolutional coder	int
4	TPS_Bits	TPS information bits	int
5	constellation	constellation signal before IFFT	complex

Notes/Equations


 This subnetwork model generates a DVB-T signal source. One OFDM symbol is generated each firing. The schematic for this subnetwork is shown below.

DTV_DVBTSignalSrc Schematic

 The DVB-T signal source format follows the DVB-T specification. <u>DVB-T Baseband</u> <u>System Block Diagram</u> is functional block diagram of the DVB-T baseband system. The DTV_DVBTSignalSrc includes: scrambler (DTV_ScrambleByte); outer coder (DTV_RSCoder); outer interleaver (DTV_InterlvInt); inner coder (DTV_PuncConvCoder); inner interleaver (DTV_DVBTInnerInterlv); mapper (DTV_Mapper); and, frame adaptation, OFDM, and guard interval insertion (in DTV_DVBTOFDMMod subnetwork).

DVB-T Baseband System Block Diagram

For a MPEG-2 transport stream, the DTV_DVBTTSPsource model can be activated (shown de-activated in <u>DTV_DVBTSignalSrc Schematic</u>) and the current active source deactivated. DTV_DVBTSignalSrc requires more buffer than the current active source; for example, a code rate of 7/8 is too large.

This signal source works per one OFDM symbol. The number of constellation output pin is 1705 (2K mode) or 6817 (8K mode) per one OFDM symbol. The number of samples of each OFDM symbol (DVBT_signal output pin) is:

- (1+GuardInterval)×2048×OversamplingRatio (2K mode)
- (1+GuardInterval)×8192×OversamplingRatio (8K mode)

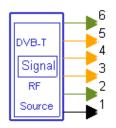
3. Parameter Details

Mode is used to select a 2K or 8K transmission mode as defined in DVB-T. OversamplingOption indicates the oversampling ratio of the transmission signal.

Advanced Design System 2011.01 - DTV Design Library

Oversampling ratios 1, 2, 4, 8, 16, 32 are supported in this source. If OversamplingOption = Ratio 2, the IFFT size is 4096 (2K mode) or 16384 (8K mode). GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. Guard interval types 1/4, 1/8, 1/16 and 1/32 are defined in the DVB-T specification. GuardInterval can be set to any value between 0.0 and 1.0 (not just 1/4, 1/8, 1/16 and 1/32). For proper demodulation, the value must match the guard interval length actually used in the input signal.

CodeRate is defined as code rate of stream. Code rates1/2, 2/3, 3/4, 5/6 and 7/8 are available in this source.


MappingMode specifies signal constellations and mapping: QPSK, 16-QAM or 64-QAM. For the DataType parameter:

- if PN9 is selected, a 511-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.153
- if PN15 is selected, a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151
- if FIX4 is selected, a zero-stream is generated
- if x_1_x_0 is selected (x equals 4, 8, 16, 32, or 64) a periodic bit stream is generated, with the period being 2x. In one period, the first x bits are 1s and the second x bits are 0s.

References

1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

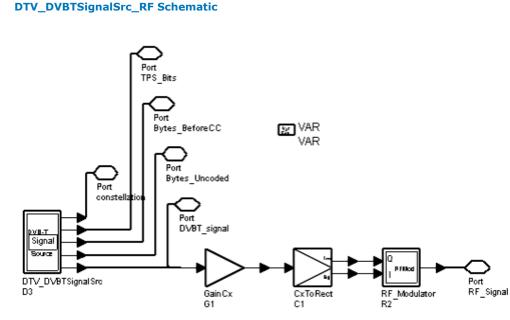
DTV_DVBTSignalSrc_RF

Description: DVB-T RF signal source **Library:** DTV, DVB-T **Class:** TSDFDTV_DVBTSignalSrc_RF

Parameters

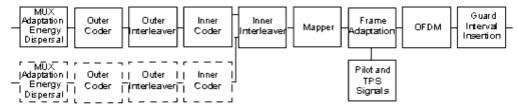
Name	Description	Default	Symbol	Unit	Туре	Range
ROut	output resistance	DefaultROut		Ohm	real	(0,∞)
RTemp	physical temperature, in degrees C	DefaultRTemp		Celsius	real	[- 273.15, ∞)
Noise	Enable thermal noise?: NO, YES	NO			enum	
FCarrier	carrier frequency	474.0MHz		Hz	real	(0,∞)
Power	modulator output power	40mW		W	real	(0,∞)
Bandwidth	bandwidth	(2048/224.0)MHz		Hz	real	(0,∞)
MirrorSpectrum	Mirror spectrum about carrier?: NO, YES	NO			enum	
GainImbalance	Gain imbalance, Q vs I	0.0		dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0		deg	real	(-∞, ∞)
I_OriginOffset	I origin offset (percent)	0.0			real	(-∞, ∞)
Q_OriginOffset	Q origin offset (percent)	0.0			real	(-∞, ∞)
IQ_Rotation	IQ rotation	0.0		deg	real	(-∞, ∞)
Mode	transmission mode: DVB 2k mode, DVB 8k mode	DVB 2k mode			enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S		enum	
GuardInterval	guard interval (fractional FFT size)	0.125			real	[0, 1]
CodeRate	code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2			enum	
MappingMode	signal constellation and mapping: QPSK, QAM-16, QAM-64	QAM-16			enum	
DataType	payload data type: PN9, PN15, FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0, _32_1_32_0, _64_1_64_0	PN9			enum	

Pin Outputs


Advanced Design System 2011.01 - DTV	Design Library
--------------------------------------	----------------

Pin	Name	Description	Signal Type
1	RF_signal	RF signal	timed
2	DVBT_signal	DVB-T signal	complex
3	Bytes_Uncoded	information bytes of transport packet	int
4	Bytes_BeforeCC	information bytes before convolutional coder	int
5	TPS_Bits	TPS information bits	int
6	constellation	constellation signal before IFFT	complex

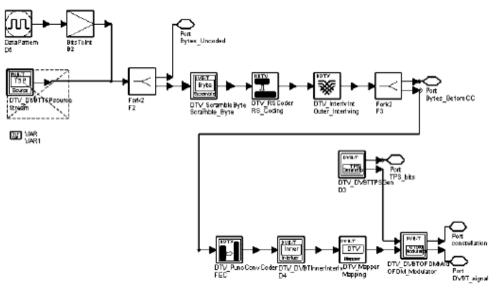
Notes/Equations


1. This subnetwork model integrates an RF modulator and a baseband signal source. The baseband signal is fed to the RF modulator; after RF modulation the timed signal is output.

The schematic for this subnetwork is shown below.

2. The format of DVB-T signal source follows the DVB-T specification. The figure below shows a functional block diagram of a DVB-T baseband system.

DVB-T Baseband System Block Diagram


 The schematic for the signal source is shown in <u>DTV_DVBTSignalSrc Schematic</u>. The DTV_DVBTSignalSrc includes: scrambler (DTV_ScrambleByte); outer coder (DTV_RSCoder); outer interleaver (DTV_InterlvInt); inner coder (DTV_PuncConvCoder); inner interleaver (DTV_DVBTInnerInterlv); mapper

Advanced Design System 2011.01 - DTV Design Library (DTV_Mapper); and, frame adaptation, OFDM, and guard interval insertion (in DTV_DVBTOFDMMod subnetwork).

🖯 Note

To use an MPEG-2 transport stream, DTV_DVBTTSPsource must be active and the current active source deactivated. DTV_DVBTTSPsource needs more buffer than the current active source. In some cases, code rate 7/8 is too large.

DTV_DVBTSignalSrc Schematic

This signal source uses one OFDM symbol; 1705 (2K mode) or 6817 (8K mode) constellations are output. DVBT_signal pin outputs samples for each OFDM symbol:

- (1+GuardInterval)×2048×OversamplingRatio (2K mode)
- (1+GuardInterval)×8192×OversamplingRatio (8K mode)
- 4. Parameter Details

FCarrier defines the RF frequency for the DVB signal.

Power defines the power level for FCarrier.

Bandwidth indicates signal bandwidth.

The MirrorSpectrum (when set to YES) conjugates the input signal before any other processing is done.

The GainImbalance, PhaseImbalance, I_OriginOffset, Q_OriginOffset, and IQ_Rotation parameters add certain impairments to the ideal output RF signal. Impairments are added in the order described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

$$V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin\left(\omega_{c}t + \frac{\phi\pi}{180}\right)\right)$$

where A is a scaling factor that depends on the Power and ROut parameters specified by the user, $V_1(t)$ is the in-phase RF envelope, $V_2(t)$ is the quadrature phase RF

envelope, g is the gain imbalance

GainImbalance

g = 10

and, Φ (in degrees) is the phase imbalance. The signal $V_3(t)$ is rotated by IQ_Rotation degrees; I_OriginOffset and Q_OriginOffset are then applied to the rotated signal. Note that the amounts specified are percentages with respect to the output rms voltage. The output rms voltage is given by sqrt(2×ROut×Power).

Mode specifies the 2K or 8K transmission mode as defined in the DVB-T specification. OversamplingOption specifies the transmission signal oversampling ratio 1, 2, 4, 8, 16, 32. If OversamplingOption=2, the IFFT size is 4096 (2K mode) or 16384 (8K mode).

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. Guard interval types 1/4, 1/8, 1/16 and 1/32 are defined in the DVB-T specification. GuardInterval can be set to any value between 0.0 and 1.0 (not just 1/4, 1/8, 1/16 and 1/32). For proper demodulation, the value must match the guard interval length actually used in the input signal.

CodeRate specifies the stream code rate: 1/2, 2/3, 3/4, 5/6, or 7/8.

MappingMode specifies signal constellation and mapping modes: QPSK, 16-QAM, or 64-QAM.

For the DataType parameter:

- if PN9 is selected, a 511-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.153
- if PN15 is selected, a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151
- if FIX4 is selected, a zero-stream is generated
- if x_1_x_0 is selected, where x equals 4, 8, 16, 32, or 64, a periodic bit stream is generated, with the period being 2x. In one period, the first x bits are 1s and the second x bits are 0s.

References

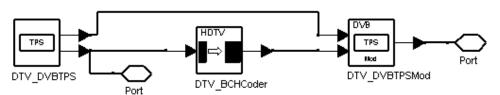
1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTTPSGen

Description: Modulated transmission parameter signal information **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTTPSGen

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of TPS information bits	54		int	{54}
InitiBit	initialization bit for DBPSK modulation (1 bit)	1		int	{0,1}
Sync	synchronization word (16 bits): W0, W1	W0		enum	
LengthIndicator	TPS length indicator (6 bits)	010111		int array	"0 1 0 1 1 1"
FrameNumber	frame number in one super frame (2 bits): F1, F2, F3, F4	F1		enum	
Constellation	modulation scheme in DVB-T (2bits): QPSK, QAM 16, QAM 64, reserved M	QPSK		enum	
HierarchyInform	signaling format for alpha values (3 bits): Non hierarchical, alpha 1, alpha 2, alpha 4, reserved H1, reserved H2, reserved H3, reserved H4	Non hierarchical		enum	
CodeRateHP	high priority stream current code rate (3 bits): HP 1/2, HP 2/3, HP 3/4, HP 5/6, HP 7/8, Reserved C1 HP, Reserved C2 HP, Reserved C3 HP	HP 1/2		enum	
CodeRateLP	low priority stream current code rate (3 bits): LP 1/2, LP 2/3, LP 3/4, LP 5/6, LP 7/8, Reserved C1 LP, Reserved C2 LP, Reserved C3 LP	LP 1/2		enum	
GuardInterval	guard interval values (2 bits): G 1/32, G 1/16, G 1/8, G 1/4	G 1/32		enum	
TransmissionMode	transmission mode (2 bits): mode 2k, mode 8k, reserved T1, reserved T2	mode 2k		enum	
FutureUse	reserved for future use (currently, all 14 bits are set to 0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		int array	


Pin Outputs

Pin	Name	Description	Signal Type
1	TPS	modulated TPS information signal	complex
2	TPS_Bits	TPS information bits	int

Notes/Equations

1. This subnetwork model generates modulated transmission parameter signal information used in TPS carriers in OFDM symbols. The schematic for this subnetwork is shown below.

DTV_DVBTTPSGen Schematic

DTV_DVBTPS generates 54 bits (1 initialization, 16 synchronization, and 37 information); the 53 TPS synchronization and information transmission mode are extended with 14 parity bits of the BCH (67,53, t = 2) shortened code, derived from the original systematic BCH (127,113, t = 2) code, which is implemented by DTV_BCHCoder; the 68-bit TPS block is modulated by DBPSK, which is implemented by DTV_DVBTPSMod.

Each firing, the TPS_Bits pin outputs 53 bits (16 synchronization and 37 information) and TPS outputs 68 modulated TPS signals.

- 3. The TPS is defined over 68 consecutive OFDM symbols (one OFDM frame). Four consecutive frames correspond to one OFDM super-frame. The reference sequence corresponding to the TPS carriers of the first symbol of each OFDM frame is used to initialize the TPS modulation on each TPS carrier. Each OFDM symbol conveys one TPS bit. Each TPS block (corresponding to one OFDM frame) contains 68 bits:
 - 1 initialization bit
 - 16 synchronization bits
 - 37 information bits Of the 37 information bits, 31 are used (6 bits are reserved for future use and are set to zero).
 - 14 redundancy bits for error protection
- 4. Bit assignments are listed in the table below.

TPS Signal Information

Bit Number	Format	Purpose/Content
<i>S</i> ₀		Initialization bit for differential 2_PSK modulation
$S_1 - S_{16}$	0011010111101110 or 1100101000010001	Synchronization word
S ₁₇ – S ₂₂	010 111	Length indicator
S ₂₃ – S ₂₄	See Signal Format for Frame Number	Frame number
S ₂₅ – S ₂₆	See Signal Format for Constellation Patterns	Constellation
S ₂₇ – S ₂₉	See Signal Format for a Values	Hierarchy information
$S_{30} - S_{32}$	See Signal Format for Each Code Rate	Code rate, HP stream
S ₃₃ – S ₃₅	See Signal Format for Each Code Rate	Code rate, LP stream
S ₃₆ – S ₃₇	See Signal Format for Each Guard Interval	Guard interval
S ₃₈ – S ₃₉	See Signal Format for Transmission Mode	Transmission mode
S ₄₀ – S ₅₂	all set to 0	Reserved for future use
S ₅₄ – S ₆₆	BCH code	Error protection

Advanced Design System 2011.01 - DTV Design Library

Signal Format for Frame Number

Bits S ₂₃ – S ₂₄	Frame Number
00	1 in the super-frame
01	2 in the super-frame
10	3 in the super-frame
11	4 in the super-frame

Signal Format for Constellation Patterns

Bits S ₂₅ – S ₂₆	Constellation Characteristics
00	QPSK
01	16-QAM
10	64-QAM
11	reserved

Signal Format for a Values

Bits S ₂₇ – S ₂₉	α Value
000	Non-hierarchical
001	a = 1
010	a = 3
011	a = 3
100	reserved
101	reserved
110	reserved
111	reserved

Signal Format for Each Code Rate

Bits, S ₃₀ – S ₃₂ HP Stream, S ₃₃ – S ₃₅ LP Stream	Code Rate
000	1/2
001	2/3
010	3/4
011	5/6
100	7/8
101	reserved
110	reserved
111	reserved

Signal Format for Each Guard Interval

Bits S ₃₆ – S ₃₇	Guard Interval Values
00	1/32
01	1/16
10	1/8
11	1/4

Signal Format for Transmission Mode

Bits S ₃₈ – S ₃₉	Transmission Mode	
00	2K mode	
01	8K mode	
10	reserved	
11	reserved	

5. Error Protection of TPS The 53 bits containing the TPS synchronization and information (bits $s_1 - s_{53}$) are

extended with 14 parity bits of the BCH (67,53, t = 2) shortened code, derived from the original systematic BCH (127,113, t = 2) code. The code generator polynomial is:

 $h(x) = x^{14} + x^9 + x^8 + x^6 + x^5 + x^4 + x^2 + x + 1$

The shortened BCH code is implemented by adding 60 bits, all set to zero, before the information bits input of an BCH(127,113, t = 2) encoder. After BCH encoding these null bits are discarded, leading to a BCH code word of 67 bits.

6. TPS Modulation

TPS cells are transmitted at the *normal* power level, that is, they are transmitted with energy equal to that of the mean of all data cells, $E[c \times c^*] = 1$.

Each TPS carrier is DBPSK modulated and conveys the same message. The DBPSK is initialized at the beginning of each TPS block.

The following rule applies for the differential modulation of carrier k of symbol I (I > 0) in frame m:

if $s_1 = 0$, then

$$Re\{c_{m,l,k}\} = Re\{c_{m,l-1,k}\}, Im\{c_{m,l,k}\} = 0$$

if $s_1 = 1$, then

$$Re\{c_{m,l,k}\} = -Re\{c_{m,l-1,k}\} \ Im\{c_{m,l,k}\} = 0$$

The absolute modulation of the TPS carriers in the first symbol in a frame is derived from the reference sequence w_k as follows:

$$Re\{c_{m,l,k}\} = 2\left(\frac{1}{2} - w_k\right)$$

 $Im\{c_{m,l,k}\} = 0$

References

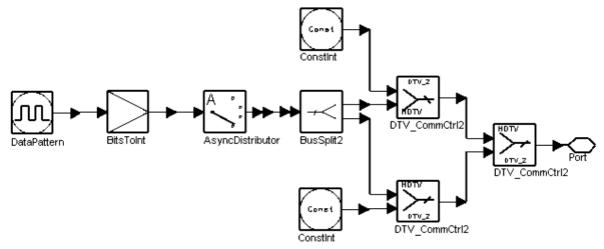
1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_DVBTTSPsource

Description: Transport packets signal source **Library:** DTV, DVB-T **Class:** SDFDTV_DVBTTSPsource

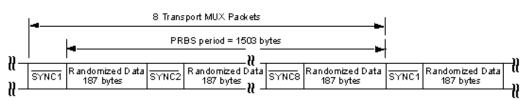
Parameters

Name	Description	Default	Unit	Туре	Range
DataType	payload data type: PN9, PN15, FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0, _32_1_32_0, _64_1_64_0	PN9		enum	


Pin Outputs

Pin	Pin Name Description		Signal Type
1	TSP	Transport system packet signal source	int

Notes/Equations


1. This subnetwork model generates MEPG-2 transport MUX packets. The schematic for this subnetwork is shown below.

DTV_DVBTTSPsource Schematic

2. Each firing, 8 transport packets with 8×188 bytes are generated as shown below.

Transport Packet Format

To provide an initialization signal for the descrambler, the MPEG-2 sync byte of the first transport packet in a group of 8 packets is bit-wise inverted from 47_{HEX} (71) to

 $\rm B8_{HEX}$ (184). So, the first sync of the first packet is $\rm B8_{HEX}$ (184) and the left 7 sync

of the left 7 packets are all 47_{HEX} (71).

- 3. DataPattern specifies the type of data pattern:
 - PN9 specifies a 511-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.153
 - PN15 specifies a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151
 - FIX4 specifies a zero-stream is generated
 - x_1_x_0 (where x equals 4, 8, 16, 32, or 64) specifies a periodic bit stream is generated, with the period being 2 x. In one period, the first x bits are 1 and the second x bits are 0.

References

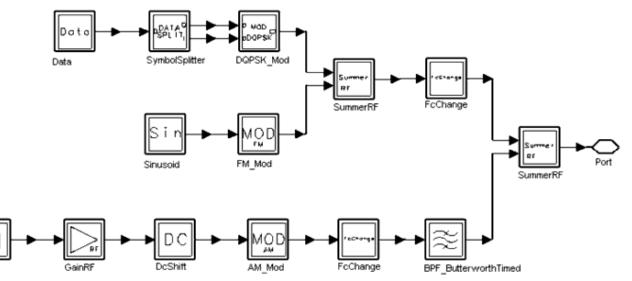
1. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_PALSource

Description: PAL signal source **Library:** DTV, DVB-T **Class:** TSDFDTV_PALSource

Parameters

Name	Description	Default	Unit	Туре	Range
RIn	output resistance	DefaultRIn	Ohm	real	(0,∞)
ROut	output resistance	DefaultROut	Ohm	real	(0,∞)
RTemp	physical temperature, in degrees C	DefaultRTemp	Celsius	real	[-273.15, ∞)
FCarrier	carrier frequency	474.0MHz	Hz	real	(0,∞)
Power	modulator output power	40mW	W	real	(0,∞)
SamplingRate	sampling rate	(2048/224.0)MHz	Hz	real	(0,∞)


Pin Outputs

Pin	Name	Description	Signal Type
1	PAL_signal	PAL signal	timed

Notes/Equations

 The subnetwork model generates a PAL signal source. The PAL signal consists of color bars, FM sound (+/- 50kHz dev, 1kHz tone), and NICAM. The schematic for this subnetwork is shown below.

DTV_PALSource Schematic

2. This PAL signal source is implemented according to European Air UHF band IV channel E21. E21 band limits are 470 to 478 MHz; center frequency is 474 MHz; video carrier frequency is 471.25 MHz; audio carrier frequency is 477.25 MHz; and, the NICAM carrier frequency is 477.802 MHz.

RF modulation occurs on the designated band.

FCarrier is the center frequency of the designated PAL channel. Power sets the RF modulator output power. SamplingRate is the PAL signal bandwidth; its reciprocal is the RF modulation simulation time step.

References

- 1. Recommendations of the CCIR, 1990, Volume XI Part 1, Broadcasting Service (Television), CCIR (International Radio Consultative Committee), Geneva, 1990.
- Recommendations of the CCIR, 1990, Annex to Volume XI Part 1, Broadcasting Service (Television), CCIR (International Radio Consultative Committee), Geneva, 1990.
- Recommendations of the CCIR, 1990, Volume XII, Television and Sound Transmission (CMTT), CCIR (International Radio Consultative Committee), Geneva, 1990.
- 4. Reports of the CCIR, 1990, Annex to Volume XII, Television and Sound Transmission (CMTT), CCIR (International Radio Consultative Committee), Geneva, 1990.

ISDB-T Components

- *DTV CarrierRotator* (dtv)
- DTV CarrierScrambler (dtv)
- DTV CDSCDecoder (dtv)
- DTV ChEstimator (dtv)
- DTV DemuxCohSegs (dtv)
- DTV DemuxDiffSegs (dtv)
- DTV DemuxTMCC (dtv)
- DTV InterSegInterlv (dtv)
- DTV ISDBDemodulation (dtv)
- DTV ISDBFreqDeinterlv (dtv)
- DTV ISDBFreqInterlv (dtv)
- DTV ISDBModulation (dtv)
- DTV ISDBMuxSegs (dtv)
- DTV ISDBOFDMDemod OneLay (dtv)
- DTV ISDBOFDMDemod ThreeLay (dtv)
- DTV ISDBOFDMDemod TwoLay (dtv)
- DTV ISDBOFDMMod OneLay (dtv)
- DTV ISDBOFDMMod ThreeLay (dtv)
- DTV ISDBOFDMMod TwoLay (dtv)
- DTV ISDBOneLayReceiver (dtv)
- DTV ISDBOneLayReceiver RF (dtv)
- DTV ISDBOneLaySource (dtv)
- DTV ISDBOneLaySource RF (dtv)
- DTV ISDBPartialReceiver RF (dtv)
- DTV ISDBThreeLayReceiver (dtv)
- DTV ISDBThreeLayReceiver RF (dtv)
- DTV ISDBThreeLaySource (dtv)
- DTV ISDBThreeLaySource RF (dtv)
- DTV ISDBTimeInterlv (dtv)
- DTV ISDBTMCC (dtv)
- DTV ISDBTSPSource (dtv)
- DTV ISDBTwoLayFreqDeinterlv (dtv)
- DTV ISDBTwoLayFreqInterlv (dtv)
- DTV ISDBTwoLayReceiver (dtv)
- DTV ISDBTwoLayReceiver RF (dtv)
- DTV ISDBTwoLaySource (dtv)
- DTV ISDBTwoLaySource RF (dtv)
- DTV LFSRCoder (dtv)
- DTV LoadIFFTBuff (dtv)
- *DTV MuxCohSegs* (dtv)
- DTV MuxDiffSegs (dtv)
- DTV PackTMCC (dtv)
- *DTV TimeInterlv* (dtv)
- DTV TMCCDemod (dtv)
- DTV TMCCInfo (dtv)
- DTV TMCCMod (dtv)

DTV_CarrierRotator

Description: Particle rotation within segment **Library:** DTV, ISDB-T **Class:** SDFDTV_CarrierRotator

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	block length of particles for one segment	384		int	{96, 192, 384}†
StartPoint	start particle number in segment	0123		int array	(-∞, ∞)
Phase	initial phase of segment sequence	0		int	(-∞, ∞)

⁺ Carriers = 96, 192, 384 for mode 1, 2, 3, respectively

Pin Inputs

Pin	Name	Description	Signal Type
1	input	symbols to be rotated	anytype

Pin Outputs

Pin	Name	Description	Signal Type
2	output	rotated symbols	anytype

Notes/Equations

- 1. This model performs intra-segment carrier rotation for each segment in frequency interleaving.
- 2. This model implements the intra-segment rotation and permutation of the OFDM segment symbols shown in the figure below.

 $S'_{(k + i \mod Carriers)} = S_{i, 0, k}$ $0 \le i \le Carriers - 1$ k is the segment number $S_{i, j, k}$ denotes the complex data of the k th segment before inter-segment interleaving $S'_{i, j, k}$ denotes the complex data of the k th segment after inter-segment interleaving

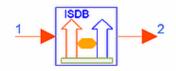
Advanced Design System 2011.01 - DTV Design Library Intra-Segment Carrier Rotation Interleaving

S'0,0,k	S'1,0,k	S'2,0,k	 S'95,0 k
S ^r (k mod 96),0 k	S ^r (k+1 mod 96),0,k	S(k+2 mod 96),0,k	 S'(k+95 mod 96),0,k

(a) Intra-segment carrier rotation for Mode 1

S' _{0,0,k}	S'1,0,k	S' _{2,0,k}	 S′95,0,k
ട് _{(k mod192),0,k}	S'(k+1 mod 192),0,k	S(k+2 mod 192),0,k	 S'(k+191 mod 192),0,k

(b) Intra-segment carrier rotation for Mode 2


S'0,0,k	S'1,0,k	S'2,0,k	 S′ _{383,0,k}
S'(k mod 384),0,k	S(k+1 mod 384),0,k	S ^{(k+2 mod 384),0,k}	 S ⁽ (k+383 mod 384),0,k

(c) Intra-segment carrier rotation for Mbde 3

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_CarrierScrambler

Description: Carrier scrambler and descrambler **Library:** DTV, ISDB-T **Class:** SDFDTV_CarrierScrambler

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers for each segment in OFDM modulation mode	96		int	{96,192, 384}†
Option	carrier option:Scramble, Descramble: Scramble, Descramble	Scramble		enum	
Sequence	customized carrier mapping index, or empty to use the ISDB defaults			int array	[0, ∞)

⁺ Carriers = 96, 192, 384 for mode 1, 2, 3, respectively

Pin Inputs

Pin	Name	Description	Signal Type
1	input	symbols to be randomized	anytype
Pin	Output	s	

Pin	Name	Description	Signal Type
2	output	randomized symbols	anytype

Notes/Equations

- 1. This model performs inter-segment carrier randomization in frequency interleaving for each segment.
- 2. This model assigns the OFDM symbols to each carrier within each segment in a predefined permutation order. Carrier permutation mapping from input to output according to modulation mode is described in <u>Intra-Segment Carrier Randomization</u> for Mode 1 through <u>Intra-Segment Carrier Randomization for Mode 3</u>. These mapping tables are used when Sequence is empty and Option indicates scrambling or descrambling. A customized mapping table can be used to implement a user-specified design, in which case Option is ignored.

Advanced Design System 2011.01 - DTV Design Library

			Auvan	cu Desi	gii Systei	11 2011.0		Designi	2101 al y			
From	0	1	2	3	4	5	6	7	8	9	10	11
То	80	93	63	92	94	55	17	81	6	51	9	85
From	12	13	14	15	16	17	18	19	20	21	22	23
То	89	65	52	15	73	66	46	71	12	70	18	13
From	24	25	26	27	28	29	30	31	32	33	34	35
То	95	34	1	38	78	59	91	64	0	28	11	4
From	36	37	38	39	40	41	42	43	44	45	46	47
То	45	35	16	7	48	22	23	77	56	19	8	36
From	48	49	50	51	52	53	54	55	56	57	58	59
То	39	61	21	3	26	69	67	20	74	86	72	25
From	60	61	62	63	64	65	66	67	68	69	70	71
То	31	5	49	42	54	87	43	60	29	2	76	84
From	72	73	74	75	76	77	78	79	80	81	82	83
То	83	40	14	79	27	57	44	37	30	68	47	88
From	84	85	86	87	88	89	90	91	92	93	94	95
То	75	41	90	10	33	32	62	50	58	82	53	24
				· .				-			·	

values indicate carrier indexing; complex data indicated by the From carrier index is carried by the To carrier index

Intra-Segment Carrier Randomization for Mode 2

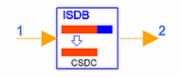
Advanced Design System 2011.01 - DTV Design Library

			Auva	liced Des	sign Syste	2011.0	JI - DI V	Design I	lorary			
From	0	1	2	3	4	5	6	7	8	9	10	11
То	98	35	67	116	135	17	5	93	73	168	54	143
From	12	13	14	15	16	17	18	19	20	21	22	23
То	43	74	165	48	37	69	154	150	107	76	176	79
From	24	25	26	27	28	29	30	31	32	33	34	35
То	175	36	28	78	47	128	94	163	184	72	142	2
From	36	37	38	39	40	41	42	43	44	45	46	47
То	86	14	130	151	114	68	46	183	122	112	180	42
From	48	49	50	51	52	53	54	55	56	57	58	59
То	105	97	33	134	177	84	170	45	187	38	167	10
From	60	61	62	63	64	65	66	67	68	69	70	71
То	189	51	117	156	161	25	89	125	139	24	19	57
From	72	73	74	75	76	77	78	79	80	81	82	83
То	71	39	77	191	88	85	0	162	181	113	140	61
From	84	85	86	87	88	89	90	91	92	93	94	95
То	75	82	101	174	118	20	136	3	121	190	120	92
From	96	97	98	99	100	101	102	103	104	105	106	107
То	160	52	153	127	65	60	133	147	131	87	22	58
From	108	109	110	111	112	113	114	115	116	117	118	119
То	100	111	141	83	49	132	12	155	146	102	164	66
From	120	121	122	123	124	125	126	127	128	129	130	131
То	1	62	178	15	182	96	80	119	23	6	166	56
From	132	133	134	135	136	137	138	139	140	141	142	143
То	99	123	138	137	21	145	185	18	70	129	95	90
From	144	145	146	147	148	149	150	151	152	153	154	155
То	149	109	124	50	11	152	4	31	172	40	13	32
From	156	157	158	159	160	161	162	163	164	165	166	167
То	55	159	41	8	7	144	16	26	173	81	44	103
From	168	169	170	171	172	173	174	175	176	177	178	179
То	64	9	30	157	126	179	148	63	188	171	106	104
From	180	181	182	183	184	185	186	187	188	189	190	191
То	158	115	34	186	29	108	53	91	169	110	27	59

values indicate carrier indexing; complex data indicated by the From carrier index is carried by the To carrier index

Intra-Segment Carrier Randomization for Mode 3

From	0	1	2	3	4	5	6	7	8	9	10	11
То	62	13	371	11	285	336	365	220	226	92	56	46
From	12	13	14	15	16	17	18	19	20	21	22	23


То	120	175	Adva 298	nced Des 352	ign Syste 172	m 2011.0 235	01 - DTV 53	Design L 164	ibrary. 368	187	125	82
From	24	25	26	27	28	29	30	31	32	33	34	35
То	5	45	173	258	135	182	141	273	126	264	286	88
From	36	37	38	39	40	41	42	43	44	45	46	47
То	233	61	249	367	310	179	155	57	123	208	14	227
From	48	49	50	51	510	53	54	55	56	57	58	59
То	100	311	205	79	184	185	328	77	115	277	112	20
From	60	61	62	63	64	65	66	67	68	69	70	71
То	199	178	143	152	215	204	139	234	358	192	309	183
From	72	73	74	75	76	77	78	79	80	81	82	83
То	81	129	256	314	101	43	97	324	142	157	90	214
From	84	85	86	87	88	89	90	91	92	93	94	95
		_	_	_	_	-	_	_	_	_	_	_
To	102	29	303	363 99	261	31	22	52	305	301	293	177
From	96	97	98	_	100	101	102	103	104	105	106	107
То	116	296	85	196	191	114	58	198	16	167	145	119
From	108	109	110	111	112	113	114	115	116	117	118	119
To _	245	113	295	193	232	17	108	283	246	64	237	189
From	120	121	122	123	124	125	126	127	128	129	130	131
То	128	373	302	320	239	335	356	39	347	351	73	158
From	132	133	134	135	136	137	138	139	140	141	142	143
То	276	243	99	38	287	3	330	153	315	117	289	213
From	144	145	146	147	148	149	150	151	152	153	154	155
То	210	149	383	337	339	151	241	321	217	30	334	161
From	156	157	158	159	160	161	162	163	164	165	166	167
То	322	49	176	359	12	346	60	28	229	265	288	225
From	168	169	170	171	172	173	174	175	176	177	178	179
То	382	59	181	170	319	341	86	251	133	344	361	109
From	180	181	182	183	184	185	186	187	188	189	190	191
То	44	369	268	257	323	55	317	381	121	360	260	275
From	192	193	194	195	196	197	198	199	200	201	202	203
То	190	19	63	18	248	9	240	211	150	230	332	231
From	204	205	206	207	208	209	210	211	212	213	214	215
То	71	255	350	355	83	87	154	218	138	269	348	130
From	216	217	218	219	220	221	222	223	224	225	226	227
То	160	278	377	216	236	308	223	254	25	98	300	201
From	228	229	230	231	232	233	234	235	236	237	238	239
То	137	219	36	325	124	66	353	169	21	35	107	50
From	240	241	242	243	244	245	246	247	248	249	250	251
То	106	333	326	262	252	271	263	372	136	0	366	206
From	252	253	254	255	256	257	258	259	260	261	262	263
То	159	122	188	6	284	96	26	200	197	186	345	340
From	264	265	266	267	268	269	270	271	272	273	274	275

			Adva	nced Des	agn Syste	m 2011.0)I - DI V	Design I	library			
То	349	103	84	228	212	2	67	318	1	74	342	166
From	276	277	278	279	280	281	282	283	284	285	286	287
То	194	33	68	267	111	118	140	195	105	202	291	259
From	288	289	290	291	292	293	294	295	296	297	298	299
То	23	171	65	281	24	165	8	94	222	331	34	238
From	300	301	302	303	304	305	306	307	308	309	310	311
То	364	376	266	89	80	253	163	280	247	4	362	379
From	312	313	314	315	316	317	318	319	320	321	322	323
То	290	279	54	78	180	72	316	282	131	207	343	370
From	324	325	326	327	328	329	330	331	332	333	334	335
То	306	221	132	7	148	299	168	224	48	47	357	313
From	336	337	338	339	340	341	342	343	344	345	346	347
То	75	104	70	147	40	110	374	69	146	37	375	354
From	348	349	350	351	352	353	354	355	356	357	358	359
То	174	41	32	304	307	312	15	272	134	242	203	209
From	360	361	362	363	364	365	366	367	368	369	370	371
То	380	162	297	327	10	93	42	250	156	338	292	144
From	372	373	374	375	376	377	378	379	380	381	382	383
То	378	294	329	127	270	76	95	91	244	274	27	51
	Values indicate carrier indexed, and complex data indicated by the carrier index From is carried by the carrier index To											

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_CDSCDecoder

Description: Complete differential set code (273,191) decoder **Library:** DTV, ISDB-T **Class:** SDFDTV_CDSCDecoder

Parameters

Name	Description	Default	Unit	Туре	Range
CodeLength	length of code bits	184		int	(0, 273]
Thresholds	thresholds for error detection	16 15 14 13 12 11 10 9		int array	[0, 17)

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal to be decoded	int

Pin Outputs

PinNameDescriptionSignal Type2outputdecoded signalint

Notes/Equations

- 1. This model performs complete differential set code (273,191) error correcting decoding over the input signal. After decoding, 184 or 273 bits are consumed at the input and 102 or 191 bits are produced at the output.
- For the shortened code, the same number of 0 symbols is inserted into the same position as the CDSC coder; a CDSC decoder is used to decode the block. After decoding, the padded symbols are discarded, leaving the desired information symbols.

Generating Syndromes

In the general transmission of a codeword C from a cyclic code by a uniform q-ary input, q-ary output channel we seek the codeword that is nearest in Hamming distance to the received sequence, R. Calculating the syndrome can be done with a simple feedback shift register similar to the encoder circuit. This is an improvement over building (or programming) a general-purpose multiplication of the received sequence R with a parity check matrix H. Once the syndrome is calculated, it is possible to iteratively determine which code positions are to be corrected by cycling the syndrome register.

We represent the actions of the channel by R = C + E

where
$$C = (c_0, c_1, ..., c_{n-1})$$

Advanced Design System 2011.01 - DTV Design Library represents the transmitted codeword and

$$E = (e_0, e_1, \dots, e_{n-1})$$

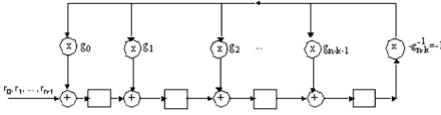
is the error sequence with both from GF(q). In polynomial form, we express the channel action by

r(x) = c(x) + e(x)

Now consider division of r(x) by g(x), generator polynomial for the code. This is motivated by recalling the valid codewords are exactly divisible by g(x); that is, they produce zero remainder upon such division. We denote the remainder of this division as another polynomial, s(x), the syndrome polynomial:

$$\begin{split} s(x) &= s_0 + s_1 x + \ldots + s_{n-k} x^{n-k} \\ &= r(x) modg(x) = [c(x) + e(x)] modg(x) \\ &= c(x) modg(x) + e(x) modg(x) \\ &= e(x) modg(x) \end{split}$$

Euclid's division theorem implies that the syndrome polynomial is exactly determined by the error sequence, and s(x) will have degree n-k-1 or less.


To calculate the syndrome polynomial, we require a circuit for calculating the remainder on polynomial division. We provide a circuit and repeat the generic structure of the syndrome calculation in <u>Syndrome-Forming Circuit</u>, a device having *n-k q-ary* register cells. The circuit is clocked n times, at which time the syndrome vector (or polynomial) resides in the (n-k)- stage register, s_0 is the left-most

memory cell.

Once the syndrome vector is determined, the syndrome vector is used to detect or correct errors.

Using Syndromes to Decode Cyclic Codes

Syndrome-Forming Circuit

CDSC (273,191) code is a one-order PG code. It can be decoded using a one-step large numeric logic method. This decoding method is simpler than the method of decoding BCH codes. In this model, it only decodes the CDSC (273,191,d=18) and its shortened codes, such as (184,102).

Using the differential set of the CDSC (273,191), we can determine 17 orthogonal check sums. The differential set of CDSC (273,191,d=18) is

{0,18,24,46,50,67,103,112,115,126,128,159,166,167,186,196,201} The polynomial of the first orthogonal check sum is

$$W_{1}(x) = x^{272} + x^{254} + x^{248} + x^{226} + x^{222} + x^{205} + x^{169} + x^{160} + x^{157} + x^{146} + x^{113} + x^{106} + x^{105} + x^{86} + x^{76} + x^{71}$$

The polynomial of the second orthogonal check sum is $W_{2}(x) = x^{18}W_{1}(x)mod(x^{273} - 1) = x^{272} + x^{266} + x^{244} + x^{240} + x^{223} + x^{187} + x^{178} + x^{178} + x^{164} + x^{124} + x^{123} + x^{104} + x^{94} + x^{89} + x^{17}$

The polynomial of the third orthogonal check sum is

Advanced Design System 2011.01 - DTV Design Library $W_3(x) = x^{24}W_1(x)mod(x^{273} + 1) = x^{272} + x^{250} + x^{246} + x^{229} + x^{193} + x^{184} + x^{170} + x^{137} + x^{130} + x^{129} + x^{110} + x^{100} + x^{95} + x^{23} + x^{5}$

$$+x^{74}+x^{72}+x^{41}+x^{34}+x^{33}+x^{14}+x^{4}$$

where the first part is omitted. According to the differential set, we get the 17 polynomial of the orthogonal check sums; then the 17 orthogonal check sums: $A_1 = s_{76} \oplus s_{71}$

 $A_{2} = s_{17}$ $A_3 = s_{23} \oplus s_5$ $A_4 = s_{45} \oplus s_{27} \oplus s_{21}$ $A_5 = s_{49} \oplus s_{31} \oplus s_{25} \oplus s_3$ $A_{6} = s_{66} \oplus s_{42} \oplus s_{40} \oplus s_{16}$ $A_7 = s_{78} \oplus s_{56} \oplus s_{52} \oplus s_{35}$ $A_8 = s_{65} \oplus s_{61} \oplus s_{44} \oplus s_8$ $A_9 = s_{68} \oplus s_{64} \oplus s_{47} \oplus s_{11} \oplus s_2$ $A_{10} = s_{79} \oplus s_{75} \oplus s_{58} \oplus s_{22} \oplus s_{13} \oplus s_{10}$ $A_{11} = s_{81} \oplus s_{77} \oplus s_{60} \oplus s_{24} \oplus s_{15} \oplus s_{12} \oplus s_{11}$ $A_{12} = s_{55} \oplus s_{46} \oplus s_{43} \oplus s_{32} \oplus s_{30}$ $A_{13} = s_{62} \oplus s_{53} \oplus s_{50} \oplus s_{39} \oplus s_{37} \oplus s_{6}$ $A_{14} = s_{63} \oplus s_{54} \oplus s_{51} \oplus s_{40} \oplus s_{38} \oplus s_7 \oplus s_0$ $A_{15} = s_{73} \oplus s_{70} \oplus s_{59} \oplus s_{57} \oplus s_{26} \oplus s_{19} \oplus s_{18}$ $A_{16} = s_{80} \oplus s_{69} \oplus s_{67} \oplus s_{36} \oplus s_{29} \oplus s_{28} \oplus s_{9}$ $A_{17} = s_{74} \oplus s_{72} \oplus s_{41} \oplus s_{34} \oplus s_{33} \oplus s_{14} \oplus s_{4}$

After the 17 orthogonal check sums are determined, the one-step numeric logic decoder decodes the received sequence based on the Thresholds value.

References

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Frame Structure and Modulation, Sept.1998.
- 2. W. Xinmei and X. Guozhen, *Error Correcting Codes: Theory and Application*, Xidian University Press, P.R.China, 1991.

DTV_ChEstimator

Description: OFDM symbol channel estimator and channel interpolator for ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_ChEstimator

Parameters

Name	Description	Default	Unit	Туре	Range
Layers	number of layers	1		int	1 for 1-layer; 2 for 2-layer; 3 for 3-layer systems
Carriers	number of carriers in one OFDM symbol	432		int	108 for mode 1 216 for mode 2; 432 for mode 3
Segments	number of segments in each layer	13		int array	[1, 13]
InSequence	segment sequence at input	11 9 7 5 3 1 0 2 4 6 8 10 12		int array	"0, 1,, Nseg- 1]"
OutSequence	segment sequence at output	0 1 2 3 4 5 6 7 8 9 10 11 12		int array	",1 ,0 ,2 ,"
Order	FFT points=2^Order	13		int	[1,∞)
CPnumber	number of continual pilots in each segment for each layer	0		int array	{1,0}
SPnumber	number of scattered pilots in each segment	36		int array	[1,∞)
SPperiod	distance in carriers between nearby scattered pilots in each segments for each layer	12		int array	[0, ∞)
SPstart	start position of scattered pilots in carriers	0		int array	[1,∞)
SPoffset	offset value of SPstart in each symbol	3		int array	[0, ∞)
SPphase	initial phase of scattered pilots for each layer	0		int array	[0, SPperiod/ SPoffset[i]-1)]

Pin Inputs

Pin Name Description Signal Type

1 input output signal from FFT complex

Pin Outputs

Pin	Name	Description	Signal Type
2	output	segments data whose order is OutSequence	complex
3	Coef	channel estimation	complex

Notes/Equations

- 1. This model adjusts the transmission spectrum, linear channel estimation, channel interpolation based on the pilot channel. It outputs the segments data and corresponding subchannel estimation according to the OutSequence.
- 2. Segments is the array of number of segments in each layer. Segments \geq 1, but the sum of each component in Segments \leq 13. For example: Segments= "1,5,6" is correct; Segments= "0,7" or Segments= "1,7,8" are not correct.
- 3. InSequence is [0, NSeg-1], where *Nseg=Segments[0]+....+Segments[Layer-1]* is the sum of each component in Segments. According to ISDB-T, the InSequence is "0,1,2, ..., Nseg-1" after Segments is determined.
- 4. OutSequence is [0,Nseg-1]. According to ISDB-T, the OutSequence is "..., 1, 0, 2, ..." after Segments is determined. For example: if Segments= "1,4", OutSequence is "3,1,0,2,4"; if Segments= "1,4,5", OutSequence is "9,7,5,3,1,0,2,4,6,8".
- 5. Order is the order of FFT. It must satisfy $2^{Order} \ge Carriers \times Nseg$.
- 6. CPnumber is 0 or 1 according to ISDB-T. If the modulation mode is DQPSK in one layer, its corresponding component in CPnumber is 1 per one segment, otherwise, its corresponding component in CPnumber is 0. For example: in a 2-layer system, the first layer is DQPSK modulation, the second layer is 16-QAM modulation, the CPnumber= "1, 0".
- 7. SPnumber = 0, 9, 18 or 36 according to ISDB-T. If the modulation mode is:
 - differential modulation in one layer, its corresponding component in SPnumber is
 0
 - coherent modulation in one layer, its corresponding component in SPnumber is 9, 18 or 36 of mode 1, mode 2, or mode 3 per one segment, respectively. For example, in a 3-layer mode 3 system, the first and third layers are coherent modulation and the second layer is differential modulation; SPnumber= "36, 0, 36".
- 8. SPperiod = 0 or 12 according to ISDB-T. If the modulation mode is:
 - differential modulation in one layer, its corresponding component in SPperiod is 0
 - coherent modulation in one layer, its corresponding component in SPperiod is 12.

For example, in a 3-layer mode 3 system, the first and third layers are coherent modulation and the second layer is differential modulation; SPperiod= "12, 0, 12".

- 9. SPstart = 0 according to ISDB-T.
- 10. SPoffset = 0 or 3 according to ISDB-T. If the modulation mode is:
 - differential modulation in one layer, its corresponding component in SPoffset is 0
 - coherent modulation in one layer, its corresponding component in SPoffset is 3 For a example, in a 3-layer mode 3 system, the first and third layers are coherent modulation and the second layer is differential modulation; SPoffset= "3, 0, 3".
- SPphase = 3 in the OFDM receiver if the modulation mode of the corresponding layer is coherent modulation (because DTV_MLEstimator makes one OFDM symbol delay); otherwise, SPphase = 0.

For a example, in a 3-layer mode 3 system, the first and third layers are coherent

modulation and the second layer is differential modulation; SPphase= "3, 0, 3".

12. Using IntState of Carriers, CPnumber and SPnumber, this model determines the number of CP (continual pilot) and SP (scattered pilots) in each segment in every layer. According to ISDB-T, if the modulation mode in one layer is:

- for differential modulation there is one CP in every segment; there are no SPs in any segment.

- for coherent modulation there are 9, 18, 36 SPs in each segment in one layer, for mode 1, 2, and 3, respectively; there are no CPs in any segment.

PRBS sequences in each segment are generated according to <u>Generation of PRBS</u> <u>Sequence</u> and the initial sets of PRBS register in <u>Initial Sets of PRBS Register</u>. The PRBS in initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on every carrier used in each segment (whether or not it is a pilot).

The position of one CP in the differential modulation segment is always zero. Positions of scattered pilots in the coherent modulation segments are generated as follows. For the symbol of index I (ranging from 0 to 203), carriers for which index k belongs to subset

 $\{k = 3 \times l \mod 4 + 12p \mid p \text{ integer}, p \ge 0, k \in [0, Length \times Segments[i]]\}$

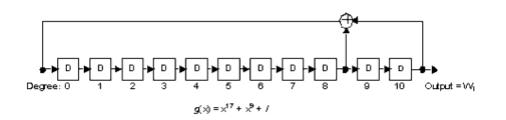
are SP positions, where i is 0, 1, 2, corresponding to the coherent modulation segments layers. Five parameters control the SP positions.

- SPnumber determines the number of scattered pilots in each segment: 9 in mode 1 (Length=108), 18 in mode 2 (Length=216), and 36 in mode 3 (Length=432).

- SPperiod = 12, SPstart = 0, SPoffset = 3 and SPphase = 0 in all modes according to ISDB-T.

After determining all CP and SP positions in each corresponding segment in every layer, we get the pilots value from the PRBS sequence. So, we can get the channel estimation in this CP and SP pilots.

$$h(i) = \frac{x(i)}{PilotValue(i)}$$


where h(i) is the channel estimation x(i) is the received signal from channel after FFT and PilotValue(i) is the PRBS value corresponding to CP and SP position in each segment.

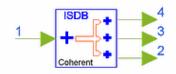
After getting the subchannel estimation in the CP and SP pilots position, we use the linear interpolation algorithm to get all active subchannel estimation: $h(k) = \alpha h(i) + (1 - \alpha)h(j)$

$$\alpha = \frac{j-k}{j-i}$$

where $i \le h \le j$, h(i), and h(j) are the subchannel estimation of the CP or SP pilots. The transmission spectrum adjustment is made in DTV_LoadIFFTBuff. In the receiver, the transmission spectrum must be inversed. InSequence and OutSequence must be identical to DTV_LoadIFFTBuff. The layer segment data is output by the order of OutSequence. Inserted zeros in DTV_LoadIFFTBuff are discarded. The active carriers and its corresponding subchannel carriers are output for use in the equalizer model.

Generation of PRBS Sequence

Initial Sets of PRBS Register


Segment Number	Initial Sets for Mode 1 +	Initial Sets for Mode 2 †	Initial Sets for Mode 3 †
11	11111111111	11111111111	11111111111
9	1 1 0 1 1 0 0 1 1 1 1	0 1 1 0 1 0 1 1 1 1 0	1 1 0 1 1 1 0 0 1 0 1
7	0 1 1 0 1 0 1 1 1 1 0	1 1 0 1 1 1 0 0 1 0 1	10010100000
5	01000101110	1 1 0 0 1 0 0 0 0 1 0	01110001001
3	1 1 0 1 1 1 0 0 1 0 1	10010100000	00100011001
1	00101111010	00001011000	1 1 1 0 0 1 1 0 1 1 0
0	1 1 0 0 1 0 0 0 0 1 0	01110001001	0010001011
2	00010000100	00000100100	1 1 1 0 0 1 1 1 1 0 1
4	10010100000	00100011001	01101010011
6	1 1 1 1 0 1 1 0 0 0 0	01100111001	10111010010
8	00001011000	1 1 1 0 0 1 1 0 1 1 0	01100010010
10	10100100111	00101010001	1 1 1 1 0 1 0 0 1 0 1
12	01110001001	00100001011	0 0 0 1 0 0 1 1 1 0 0

⁺ Degree from 0 to 10 in <u>Generation of PRBS Sequence</u>.

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_DemuxCohSegs

Description: OFDM de-segment for coherent modulation **Library:** DTV, ISDB-T **Class:** SDFDTV_DemuxCohSegs

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one segment	432		int	108 for mode 1; 216 for mode 2; 432 for mode 3
Segments	number of segments	1		int	[1, 13]
Start_Seg	initial number of segment (0 to Segments-1)	0		int	[0, 12]
SPnumber	number of scattered pilots in each segment	36		int	[0, ∞)†
SPperiod	distance in carriers between nearby scattered pilots	12		int	(0,∞)++
SPstart	start position of scattered pilots in carriers	0		int	[0, ∞) ^{††}
SPoffset	offset value of SPstart in each symbol	3		int	[0, ∞) ^{††}
SPphase	initial phase of scattered pilots	3		int	[0, SPperiod/SPoffset- 1] ⁺⁺⁺

⁺ SPnumber = 9 for mode 1, 18 for mode 2, 36 for mode 3, per segment in ISDB-T systems.

⁺⁺ SPperiod = 12, SPstart = 0, SPoffset = 3 in ISDB-T systems.

⁺⁺⁺ SPphase=3 in the OFDM receiver (because DTV_MLEstimator makes one OFDM symbol delay)

Pin Inputs

Pin	Name	Description	Signal Type
1	input	received equalized signal	complex
Pin	Output	ts	

Pin	Name	Description	Signal Type
2	output	TSP data output	complex
3	ТМСС	TMCC data output	complex
4	AC	AC data output	complex

Notes/Equations

1. This model demultiplexes coherent modulation OFDM segments (such as QPSK, 16-QAM, and 64-QAM modulation) into TSP (transport stream packet) data, TMCC

(transmission and multiplexing configuration control) data, AC (auxiliary channel) data according to <u>Structure of OFDM Segment for Coherent Modulation</u> and <u>Carrier</u> <u>Allocation of AC and TMCC for Coherent Modulation</u>.</u>

 IntState of Carriers determines the number of TMCC and AC in each segment. Then, IntState of Start_Seg and Segments determines the TMCC and AC positions in each corresponding segment according to <u>Carrier Allocation of AC and TMCC for Coherent</u> <u>Modulation</u>.

The PRBS sequences in each segment are generated according to <u>Generation of PRBS</u> <u>Sequence</u> and the initial sets of PRBS register in <u>Initial Sets of PRBS Register</u>. The PRBS in initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on every used carrier in each segment (whether or not it is a pilot).

Positions of the corresponding scattered pilots are generated as follows. For the symbol of index I (ranging from 0 to 203), carriers for which index k belongs to subset

 $\{k = 3 \times l \mod 4 + 12p \mid p \text{ integer}, p \ge 0, k \in [0, Length \times Segments]\}$

are scattered pilot positions.

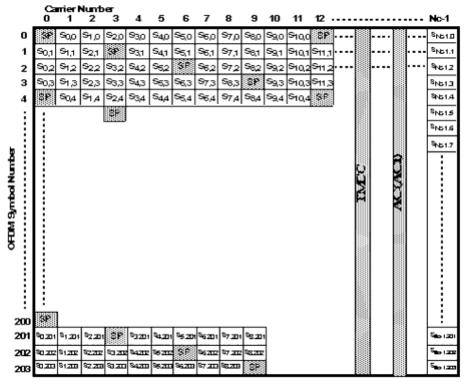
Five parameters control the scattered pilots positions.

SPnumber determines the number of scattered pilots in each segment: it is 9 in mode 1 (Length=108); 18 in mode 2 (Length=216); and, 36 in mode 3 (Length=432).

SPperiod = 12, SPstart=0, SPoffset=3 and SPphase = 0 in the three modes according to ISDB-T.

After determining TMCC, AC, and SP positions in each corresponding segment and the value of the PRBS sequence in all the active carriers in each segment, the model demultiplexes the input data into TMCC, AC, and TSP data. According to the TMCC position and the PRBS sequence, we can get the only one TMCC bit in each TMCC position, then the one transmitted TMCC bit is determined by the mean value of the TMCC positions.

$$TMCC = \frac{1}{NTMCC} \sum_{l=1}^{NTMCC} \frac{x[TMCCposition[l]]}{PilotValue[TMCCposition[l]]}$$


where *NTMCC* is the number of TMCCs in one segment; *PilotValue* is the PRBS sequence in corresponding segment; x[i] is the input data. AC data is:

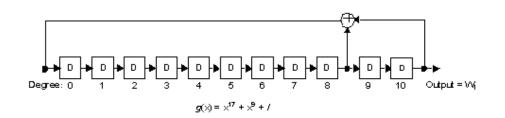
 $AC[i] = \frac{x[ACposition[i]]}{PilotValue[ACposition[i]]}$

Except for AC, TMCC, and SP positions, the remaining positions in one segment are the TSP data positions.

Data[i] = x[i]

Structure of OFDM Segment for Coherent Modulation

 $\mathsf{S}_{\ensuremath{\textit{S}}\xspace{\textit{L}}\xspace{\textit{K}}\xspace{\textit{L}}\xspac$


No-108 for Mode1; 216 for Mode2; 432 for Mode 3

Carrier Allocation of AC and TMCC for Coherent Modulation

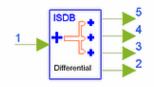
Auvalieeu Desigii Systelli 2011.01 - D1 v Desigii Liota												liorar	
Segment	11	9	7	5	3	1	0	2	4	6	8	10	12
Mode 1													
AC1_1	10	53	61	11	20	74	35	76	4	40	8	7	98
AC1_2	28	83	100	101	40	100	79	97	89	89	64	89	101
TMCC_1	70	25	17	86	44	47	49	31	83	61	85	101	23
Mode 2													
AC1_1	10	61	20	35	4	8	98	53	11	74	76	40	7
AC1_2	28	100	40	79	89	64	101	83	101	100	97	89	89
AC1_3	161	119	182	184	148	115	118	169	128	143	112	116	206
AC1_4	191	209	208	205	197	197	136	208	148	187	197	172	209
TMCC_1	70	17	44	49	83	85	23	25	86	47	31	61	101
TMCC_2	133	194	155	139	169	209	178	125	152	157	191	193	131
Mode 3													
AC1_1	10	20	4	98	11	76	7	61	35	8	53	74	40
AC1_2	28	40	89	101	101	97	89	100	79	64	83	100	89
AC1_3	161	182	148	118	128	112	206	119	184	115	169	143	116
AC1_4	191	208	197	136	148	197	209	209	205	197	208	187	172
AC1_5	277	251	224	269	290	256	226	236	220	314	227	292	223
AC1_6	316	295	280	299	316	305	244	256	305	317	317	313	305
AC1_7	335	400	331	385	359	332	377	398	364	334	344	328	422
AC1_8	425	421	413	424	403	388	407	424	413	352	364	413	425
TMCC_1	70	44	83	23	86	31	101	17	49	85	25	47	61
TMCC_2	131	155	169	178	152	191	131	194	139	209	125	157	193
TMCC_3	233	265	301	241	263	277	286	260	299	239	302	247	317
TMCC_4	410	355	425	341	373	409	349	371	385	394	368	407	347

Advanced Design System 2011.01 - DTV Design Library

Generation of PRBS Sequence

Initial Sets of PRBS Register

Segment Initial Sets for Mode 1 + Initial Sets for Mode 2 + Initial Sets for Mode 3 +


Advanced Design System 2011.01 - DTV Design Library

⁺ Degree from 0 to 10 in <u>Generation of PRBS Sequence</u>.

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_DemuxDiffSegs

Description: OFDM de-segment for differential modulation **Library:** DTV, ISDB-T **Class:** SDFDTV_DemuxDiffSegs

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one segment	432		int	108 for mode 1; 216 for mode 2; 432 for mode 3
Segments	number of segments	1		int	[1, 13]
Start_Seg	initial number of segment (0 to Segments-1)	0		int	[0, 12]

Pin Inputs

Pin	Name	Description	Signal Type
1	input	received equalized signal	complex

Pin Outputs

Pin	Name	Description	Signal Type
2	output	TSP data output	complex
3	ТМСС	TMCC data output	complex
4	AC1	AC1 data output	complex
5	AC2	AC2 data output	complex

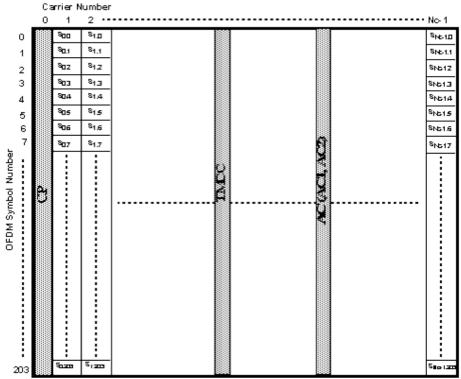
Notes/Equations

- This model demultiplexes the differential modulation OFDM segments (such as DQPSK modulation) into TSP (transport stream packet) data, TMCC (transmission and multiplexing configuration control) data, AC (auxiliary channel) data according to <u>Structure of OFDM Segment for Differential Modulation</u> and <u>Carrier Allocation of CP</u>, AC, and TMCC for Differential Modulation.
- 2. IntState of Carriers determines the number of TMCC, AC1, and AC2 in each segment. IntState of Start_Seg and Segments determine the TMCC, AC1, and AC2 positions in each corresponding segment according to <u>Carrier Allocation of CP, AC, and TMCC for</u> <u>Differential Modulation</u>.

The PRBS sequences in each segment are generated according to <u>Generation of PRBS</u> <u>Sequence</u> and the initial sets of PRBS register in <u>Initial Sets of PRBS Register</u>. The PRBS in initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on every used carriers in each segments (whether or not it is a pilot). After determining all TMCC, AC1, and AC2 positions in each corresponding segment and the value of the PRBS sequence in all active carriers in each segment, the model demultiplexes the input data into TMCC, AC1, AC2, and TSP data. According to the TMCC position and the PRBS sequence, we can get the only one TMCC bit in each TMCC position, then the one transmitted TMCC bit is determined by the mean value of those TMCC positions.

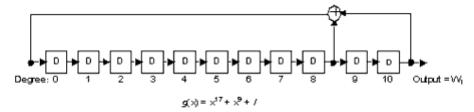
$$TMCC = \frac{1}{NTMCC} \sum_{l=1}^{x[TMCCposition[l]]} \frac{x[TMCCposition[l]]}{PilotValue[TMCCposition[l]]}$$

where *NTMCC* is the number of TMCCs in one segment; *PilotValue* is the PRBS sequence in corresponding segment; x[i] is the input data.


AC1 data is: $AC1[i] = \frac{x[AC1position[i]]}{PilotValue[AC1position[i]]}$

AC2 data is:

 $AC2[i] = \frac{x[AC2position[i]]}{PilotValue[AC2position[i]]}$


Except for the AC1, AC2 and TMCC data positions, the remaining positions in one segment are the TSP data positions. Data[i] = x[i].

Structure of OFDM Segment for Differential Modulation

 $S_{\mbox{\it Ll},\mbox{\it K}}$ denotes complex data in the data segment after time and frequency interleaving. No=108 for Model; 216 for Model; 432 for Model 3

Generation of PRBS Sequence

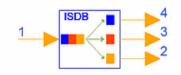
Carrier Allocation of CP, AC, and TMCC for Differential Modulation

Segment	11	9	7	5	3	1	0	2	4	6	8	10	12
Mode 1													
СР	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	53	61	11	20	74	35	76	4	40	8	7	98
AC1_2	28	83	100	101	40	100	79	97	89	89	64	89	101
AC2_1	3	3	29	28	23	30	3	5	13	72	36	25	10
AC2_2	45	15	41	45	63	81	72	18	93	95	48	30	30
AC2_3	59	40	84	81	85	92	85	57	98	100	52	42	55
AC2_4	77	58	93	91	105	103	89	92	102	105	74	104	81
TMCC_1	13	25	4	36	10	7	49	31	16	5	78	34	23
TMCC_2	50	63	7	48	28	25	61	39	30	10	82	48	37
TMCC_3	70	73	17	55	44	47	96	47	37	21	85	54	51
TMCC_4	83	80	51	59	47	60	99	65	74	44	98	70	68
TMCC_5	87	93	71	86	54	87	104	72	83	61	102	101	105
Mode 2													
СР	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	61	20	35	4	8	98	53	11	74	76	40	7
AC1_2	28	100	40	79	89	64	101	83	101	100	97	89	89
AC1_3	161	119	182	184	148	115	118	169	128	143	112	116	206
AC1_4	191	209	208	205	197	197	136	208	148	187	197	172	209
AC2_1	3	29	23	3	13	36	10	3	28	30	5	72	25
AC2_2	45	41	63	72	93	48	30	15	45	81	18	95	30
AC2_3	59	84	85	85	98	52	55	40	81	92	57	100	42
AC2_4	77	93	105	89	102	74	81	58	91	103	92	105	104
AC2_5	108	108	108	108	108	108	108	108	108	108	108	108	108
AC2_6	111	136	138	113	180	133	111	137	131	111	121	144	118
AC2_7	123	153	189	126	203	138	153	149	171	180	201	156	138
AC2_8	148	189	200	165	208	150	167	192	193	193	206	160	163
AC2_9	166	199	211	200	213	212	185	201	213	197	210	182	189
TMCC_1	13	4	10	49	16	78	23	25	36	7	31	5	34
TMCC_2	50	7	28	61	30	82	37	63	48	25	39	10	48
TMCC 3	70	17	44	96	37	85	51	73	55	47	47	21	54

TMCC_4	83	51	47	99	anced	98	68	80	59	60	65	44	_10rai 70
TMCC_5	87	71	54	104	83	102	105	93	86	87	72	61	101
TMCC_6	133	144	115	139	113	142	121	112	118	157	124	186	131
TMCC_7	171	156	133	147	118	156	158	115	136	169	138	190	145
TMCC_8	181	163	155	155	129	162	178	125	152	204	145	193	159
TMCC_9	188	167	168	173	152	178	191	159	155	207	182	206	176
TMCC_10	201	194	195	180	169	209	195	179	162	212	191	210	213
Mode 3													
СР	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	20	4	98	11	76	7	61	35	8	53	74	40
AC1_2	28	40	89	101	101	97	89	100	79	64	83	100	89
AC1_3	161	182	148	118	128	112	206	119	184	115	169	143	116
AC1_4	191	208	197	136	148	197	209	209	205	197	208	187	172
AC1_5	277	251	224	269	290	256	226	236	220	314	227	292	223
AC1_6	316	295	280	299	316	305	244	256	305	317	317	313	305
AC1_7	335	400	331	385	359	332	377	398	364	334	344	328	422
AC1_8	425	421	413	424	403	388	407	424	413	352	364	413	425
AC2_1	3	23	13	10	28	5	25	29	3	36	3	30	72
AC2_2	45	63	93	30	45	18	30	41	72	48	15	81	95
AC2_3	59	85	98	55	81	57	42	84	85	52	40	92	100
AC2_4	77	105	102	81	91	92	104	93	89	74	58	103	105
AC2_5	108	108	108	108	108	108	108	108	108	108	108	108	108
AC2_6	111	138	180	111	131	121	118	136	113	133	137	111	144
AC2_7	123	189	203	153	171	201	138	153	126	138	149	180	156
AC2_8	148	200	208	167	193	206	163	189	165	150	192	193	160
AC2_9	166	211	213	185	213	210	189	199	200	212	201	197	182
AC2_10	216	216	216	216	216	216	216	216	216	216	216	216	216
AC2_11	245	219	252	219	246	288	219	239	229	226	244	221	241
AC2_12	257	288	264	231	297	311	261	279	309	246	261	234	246
AC2_13	300	301	268	256	308	316	275	301	314	271	297	273	258
AC2_14	309	305	290	274	319	321	293	321	318	297	307	308	320
AC2_15	324	324	324	324	324	324	324	324	324	324	324	324	324
AC2_16	352	329	349	353	327	360	327	354	396	327	347	337	334
AC2_17	369	342	354	365	396	372	339	405	419	369	387	417	354
AC2_18	405	381	366	408	409	376	364	416	424	383	409	422	379
AC2_19	415	416	428	417	413	398	382	427	429	401	429	426	405
TMCC_1	13	10	16	23	36	31	34	4	49	78	25	7	5
TMCC_2	50	28	30	37	48	39	48	7	61	82	63	25	10
TMCC_3	70	44	37	51	55	47	54	17	96	85	73	47	21
TMCC_4	83	47	74	68	59	65	70	51	99	98	80	60	44
TMCC_5	87	54	83	105	86	72	101	71	104	102	93	87	61
TMCC_6	133	115	113	121	110	124	131	144	130	1/12	112	157	186

				Auv	anced	Desig	gn Sys	stem 2	011.0	I - DI		sign i	JULIA
TMCC_7	171	133	118	158	136	138	145	156	147	156	115	169	190
TMCC_8	181	155	129	178	152	145	159	163	155	162	125	204	193
TMCC_9	188	168	152	191	155	182	176	167	173	178	159	207	206
TMCC_10	201	195	169	195	162	191	213	194	180	209	179	212	210
TMCC_11	220	265	294	241	223	221	229	226	232	239	252	247	250
TMCC_12	223	277	298	279	241	226	266	244	246	253	264	255	264
TMCC_13	233	312	301	289	263	237	286	260	253	267	271	263	270
TMCC_14	267	315	314	296	276	260	299	263	290	284	275	281	286
TMCC_15	287	320	318	309	303	277	303	270	299	321	302	288	317
TMCC_16	360	355	358	328	373	402	349	331	329	337	334	340	347
TMCC_17	372	363	372	331	385	406	387	349	334	374	352	354	361
TMCC_18	379	371	378	341	420	409	397	371	345	394	368	361	375
TMCC_19	383	389	394	375	423	422	404	384	368	407	371	398	392
TMCC_20	410	396	425	395	428	426	417	411	385	411	378	407	429

Initial Sets of PRBS Register


Segment	Initial Sets for Mode 1 †	Initial Sets for Mode 2 †	Initial Sets for Mode 3 †
11	11111111111	11111111111	11111111111
9	1 1 0 1 1 0 0 1 1 1 1	0 1 1 0 1 0 1 1 1 1 0	1 1 0 1 1 1 0 0 1 0 1
7	01101011110	1 1 0 1 1 1 0 0 1 0 1	10010100000
5	01000101110	1 1 0 0 1 0 0 0 0 1 0	01110001001
3	1 1 0 1 1 1 0 0 1 0 1	10010100000	00100011001
1	00101111010	00001011000	1 1 1 0 0 1 1 0 1 1 0
0	1 1 0 0 1 0 0 0 0 1 0	01110001001	0010001011
2	00010000100	00000100100	1 1 1 0 0 1 1 1 1 0 1
4	10010100000	00100011001	01101010011
6	1 1 1 1 0 1 1 0 0 0 0	01100111001	10111010010
8	00001011000	1 1 1 0 0 1 1 0 1 1 0	01100010010
10	10100100111	00101010001	1 1 1 1 0 1 0 0 1 0 1
12	01110001001	00100001011	0 0 0 1 0 0 1 1 1 0 0
L D	from 0 to 10 in Conor		

⁺ Degree from 0 to 10 in <u>Generation of PRBS Sequence</u>.

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_DemuxTMCC

Description: TMCC bit decomposer into 20 and 184 bits) **Library:** DTV, ISDB-T **Class:** SDFDTV_DemuxTMCC

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of TMCC format	204		int	204

Pin Inputs

Pin	Name	Description	Signal Type
1	input	received equalized signal	int

Pin Outputs

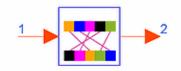
Pin	Name	Signal Type	
2	Sync	synchronization of TMCC output	int
3	Desc	segment descriptor output	int
4	Info	coded TMCC information	int

Notes/Equations

- 1. This model demultiplexes the 204 received transmission and multiplexing configuration control bits in ISDB-T systems.
- 2. According to ISDB-T, the first bit B_0 is the initialization bit, so this bit is discarded.

 $B_1 - B_{16}$, a 16-bit synchronization sequence, takes w0 and w1 (the inverse

of w0) in turn in every frame. This model outputs this 16-bit synchronization sequence.


 $B_{17} - B_{19}$ represent the segment descriptor.

 $B_{20} - B_{203}$ include TMCC information (102 bits) and 82-bit parity bits; these 184 bits need CDSC decoding.

References

Advanced Design System 2011.01 - DTV Design Library 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_InterSegInterlv

Description: Inter-segment interleaving of OFDM symbols **Library:** DTV, ISDB-T **Class:** SDFDTV_InterSegInterlv

Parameters

Name	Description	Default	Unit	Туре	Range
Segments	depth of block interleaver	4		int	[1, 13]
Carriers	width of block interleaver	384		int	{96,192,384}
Option	operating option: Interleaving, Deinterleaving: Interleave, Deinterleave	Interleave		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	input	input symbols to be interleaved	anytype
Pin	Output	S	

Pin	Name	Description	Signal Type
2	output	output symbols after interleaved	anytype

Notes/Equations

- 1. This model performs inter-segment symbol interleaving among all segments within the differential or coherent modulation layer.
- 2. The inter-segment interleaving is carried out among differential modulation (DQPSK) segments and coherent modulation (QPSK, 16-QAM, and 64-QAM) as shown below.

Inter-Segment Interleaver

Inter-Segment Interleaver for Mode 1

┝┱──╵	Danta Segi No. D	' — >	┝╸── [┎]	lata Segr No. 1	nent		┫—□	antai Segn No.2	nent			- ^{Da}	ta Segme No.n—1	ent .	
Տ _{ոլ որ} = Տո	S _{1,0,0} = S,	 S _{28,00} = S ₂₈	Տ _{ող։} = Տ ₅₈	Sigi = Sgr		Տ _{920,0} ։ =Տաց։	S _{0,0,2} = S ₁₉₂		• • •	S _{224,0,2} = S ₂₂₉ ,	[S _{00,n-1} =S96(n-1)	S _{1,00-} 1 =9560n1)+1		Տ <u>ար</u> ու = Տացու

Allocation of Complex Data before Inter-Segment Interleaving

-	Data Sec No. (* -	-	ata Segn No. 1	nent		Data Segment					- Data Segment				
Sa	ŝ		Sen	S1	ŝ		ų 1	Sz	Sme	•••	Same	•••	Sai	S2h1		Sent

Allocation of Complex Data after Inter-Segment Interleaving

Inter-Segment Interleaver for Mode 2

•	Data Seg No.t	t 🕨	 ⁰	ata Segr No. 1	nent		۹ ۵	bata Segn No. 2	nent		- ")ata Segn No.n—		
S _{0,0,0} = So	S. <u>a</u> m = S.	 Sisian = Sisi	Sı <u>q</u> ı = Sı <u>sz</u>	Sı,qı = Sıga		S ₁₉₁ д, = S ₉₈₉	S _{03,2} = S ₂₀₄	S1,8,2 = Samo		S191,82 = S313	 Sqqn-1 -S153(n1)	Signi Sigani)+1	_	Sigian-i = Sigan-i

Allocation of Complex Data before Inter-Segment Interleaving

 '	Danta Seg No.C	t —	• °	lata Segr No. 1	nen		- _	ata Segn No.2	nent		 -'	Danta Segn No.n –	nent -1	
Sø	Sn	 Sigin	s,	\$ _n ,,		Signeri	\$2	\$ _{m'2}	• · · ·	Signiz	 \$ _{n-1}	Sanı		، _{معک} ر

Allocation of Complex Data after Inter-Segment Interleaving

where S_{rack}demones complex data of OFDM segment.

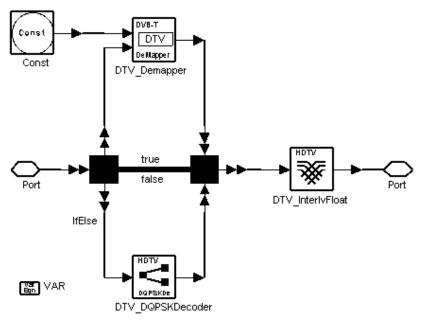
DTV_ISDBDemodulation

Description: ISDB-T demapper and deinterleaver **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBDemodulation

Parameters

Description	Default	Unit	Туре	Range
transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM- 64	DQPSK		enum	
number of segments per layer	13		int	[1, 13]
	transmission mode: Mode 1, Mode 2, Mode 3 signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM- 64	transmission mode: Mode 1, Mode 2, Mode 3 Mode 1 signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM- 64	transmission mode: Mode 1, Mode 2, Mode 3 Mode 1 signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM- DQPSK 64	transmission mode: Mode 1, Mode 2, Mode 3 Mode 1 enum signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM- 64

Pin Inputs

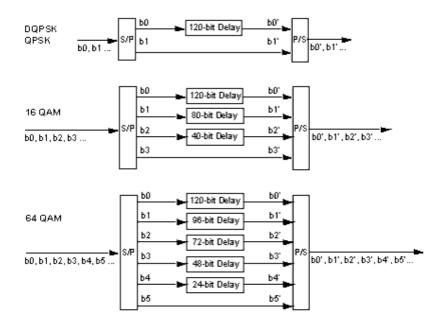

Pin	Name	Description	Signal Type		
1	In	input	complex		
Pin Outputs					

Pin	Name	Description	Signal Type
2	Out	output	real

Notes/Equations

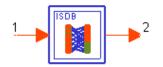
 This subnetwork model performs hard-decision de-mapping and bit-wise deinterleaving for an ISDB-T receiver. The schematic for this subnetwork is shown below.

DTV_ISDBDemodulation Schematic



2. For coherent transmission, the demapper works in a carrier-wise manner; for differential transmission (DQPSK), the demapper works in an hierarchical layer manner; that is, differential is carried out between the *i* th and the *j* th input particles, herein their index satisfies:

 $j - i = 96 \times 2^{Mode} \times Segments$


where *Mode* equals 0, 1, or 2 for Mode 1, Mode 2, or Mode 3, respectively. 3. Output of the demapper will be +1 or -1.

4. DTV_InterlvFloat performs bit-wise de-interleaving; the functional block diagram is shown below.

Bit-Wise Deinterleaving

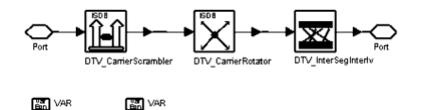
DTV_ISDBFreqDeinterlv

Description: Inter-frequency and intra-frequency deinterleaving for ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV ISDBFreqDeinterly

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
Segments	number of segments per layer	13		int	[1, 13]

Pin Inputs


Pin	Name	Description	Signal Type		
1	In	input	anytype		
Pin Outputs					

Pin	Name	Description	Signal Type
2	Out	output	anytype

Notes/Equations

1. This subnetwork model performs carrier descrambling, carrier rotating, and intersegment deinterleaving; it is the reverse of the process for DTV_ISDBFreqInterlv. The schematic for this subnetwork is shown below.

DTV_ISDBFreqDeinterlv Schematic

2. Inter-segment deinterleaving is conducted on each differential (DQPSK) and synchronous (QPSK, 16QAM, 64QAM) modulation. Intra-segment deinterleaving is conducted in two steps, carrier randomizing and carrier rotation by segment number, to eliminate periodicity in carrier arrangement. These operations make it possible to prevent burst errors of a specific segment's carrier, which can occur if the carrier arrangement period matches the frequency-selective fading after inter-segment interleaving. If the input consists of only one segment, the carrier rotation and inter-

References

DTV_ISDBFreqInterlv

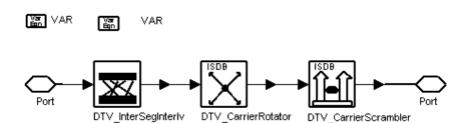
Description: Inter-frequency and intra-frequency interleaving for ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBFreqInterly

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
Segments	number of segments per layer	13		int	[1, 13]

Pin Inputs

Pin	Name	Description	Signal Type		
1	In	input	anytype		
Pin Outputs					


Pin	Name	Description	Signal Type
2	Out	output	anytype

Notes/Equations

1. This subnetwork model randomizes data carriers in the frequency domain of an ISDB-T signal generator. It performs inter-segment interleaving, carrier rotating, and carrier scrambling.

The schematic for this subnetwork is shown below.

DTV_ISDBFreqInterlv Schematic

- 2. If the input consists of one segment, the inter-segment interleaver and carrier rotator are bypassed.
- 3. The subnetwork works on the basis of OFDM symbols, so the input of the subnetwork starts with the first data carrier of the corresponding segment.

References

DTV_ISDBModulation

Description: ISDB-T TSP modulation **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBModulation

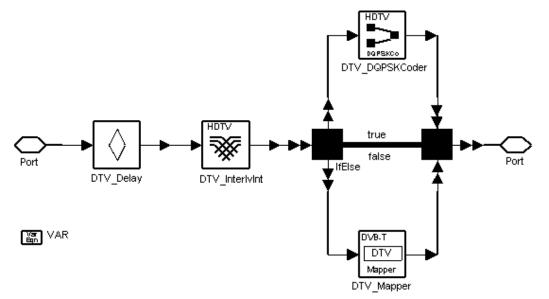
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK		enum	
Segments	number of segments per layer	13		int	[1, 13]

Pin Inputs

Pin Name	Description	Signal	Туре
----------	-------------	--------	------

1 In input int


Pin Outputs

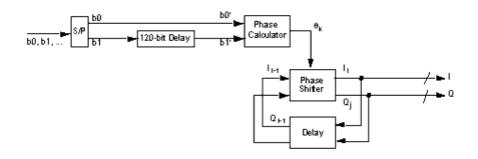
Pin	Name	Description	Signal Type
2	Out	output	complex

Notes/Equations

1. This subnetwork model performs bit-wise interleaving and data mapping. The schematic for this subnetwork is shown below.

DTV_ISDBModulation Schematic

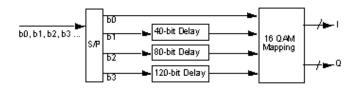
2. DTV_Delay adds delay according to <u>Bit Interleaving Delay Adjustment</u>. Bit interleaving causes a delay of 120 complex data (I+jQ). Total transmitter and receiver delay is adjusted based on two OFDM symbols.

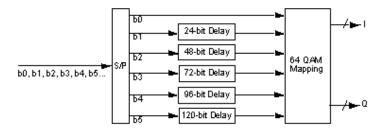

Bit Interleaving Delay Adjustment

Modulation	Number of bits for Delay Adjustmen					
	Mode 1	Mode 2	Mode 3			
DQPSKQPSK	384×N-240	768×N-240	1536×N-240			
16QAM	768×N-480	1536×N-480	3072×N-480			
64QAM	1152×N-720	2304×N-720	4608×N-720			
where $N = number of segments used in a certain layer$						

where N = number of segments used in a certain layer

3. Bit interleaving and mapping for the four modulation types are shown in the four figures below.


DQPSK Modulation


QPSK Modulation

16QAM Modulation

64QAM Modulation

References

DTV_ISDBMuxSegs

Description: Multiplexing of data and pilots into segments for ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBMuxSegs

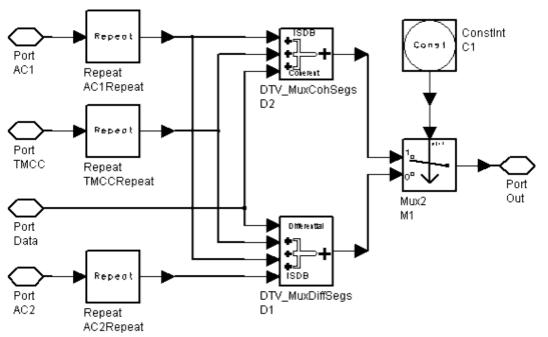
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK		enum	
Segments	number of segments per layer	13		int	[1, 13]
StartSeg	initial number of segment	0		int	[0, 12]

Pin Inputs

Pin	Name	Description	Signal Type
1	Data	input data	complex
2	ТМСС	tansmission and multiplexing configuration control pilot	complex
3	AC1	ancillary information carried by auxiliary channel 1	complex
4	AC2	ancillary information carried by auxiliary channel 2	complex

Pin Outputs


Pin	Name	Description	Signal Type
5	Out	output	complex

Notes/Equations

1. This subnetwork model merges auxiliary information (AC1), AC2, TMCC, and data into OFDM segments.

The schematic for this subnetwork is shown below.

DTV_ISDBMuxSegs Schematic

Advanced Design System 2011.01 - DTV Design Library

2. Particles consumed for each hierarchical layer in one OFDM symbol are listed in the table below.

Particles Consumed in One OFDM Symbol

Particle	Mode 1	1 Mode 2 Mode 3				
Name	Differential Modulation	Coherent Modulation	Differential Modulation	Coherent Modulation	Differential Modulation	Coherent Modulation
Data	96×Segments		192×Segment	5	384×Segment	S
тмсс	1					
AC1	2		4		8	
AC2	5	0	9	0	19	0

- 3. AC1 is used in coherent and differential modulation; AC2 is used in differential modulation only. When MappingMode=DQPSK, the present layer is differential and AC2 will be ignored.
- 4. StartSeg specifies the OFDM segment index that the first data segment of the hierarchical layer is mapped to. StartSeg must be set to 0 for layer A. If Data belongs to layer B, and layer A consists of 3 segments, then StartSeg for layer B must be set to 3.

References

DTV_ISDBOFDMDemod_OneLay

Description: One-layer (1~13 segments) OFDM demodulator of ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBOFDMDemod_OneLay

Parameters

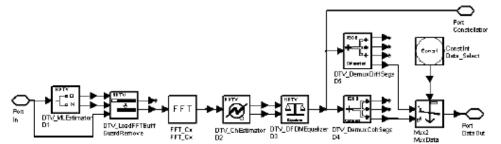
Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK		enum	
Segments	number of segments per layer	13		int	[1, 13]
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	

Pin Inputs

Pin Name Description Signal Type

1 In input data complex

Pin Outputs


Pin	Name	Description	Signal Type
2	DataOut	output	complex
3	Constellation	output	complex

Notes/Equations

1. This subnetwork model demodulates a 1-layer OFDM signal in an ISDB-T 1-layer receiver.

The schematic for this subnetwork is shown below.

DTV_ISDBOFDMDemod_OneLay Schematic

- Each firing, pin *In* consumes (1+GuardInterval)×FFTSize×OversamplingOption particles, pin *DataOut* exports 96×pow(2, Mode)×Segments particles, and pin *Constellation* exports 108×pow(2, Mode)×Segments particles.
- 3. This model introduces a delay of 1 OFDM symbol, so when pin *Constellation* is connected to a signal source reference signal for MER measurement, a delay of 108×pow(2, Mode)×Segments particles must be considered.
- 4. This model estimates the beginning of input symbols and removes the guard interval, then demodulates the signal by FFT. After channel estimation and equalization, one copy of the signal is exported to pin *Constellation* for MER measurement, one copy of the signal is demultiplexed by DTV_DemuxCohSegs or DTV_DemuxDiffSegs, and pure data carriers are exported to pin *DataOut*.
- 5. FFT size is given in the table below.

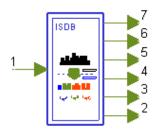
FFT Size

Segment	FFT Size					
	Mode 1	Mode 2	Mode 3			
1	256	512	1024			
2	512	1024	2048			
3	512	1024	2048			
4	1024	2048	4096			
5	1024	2048	4096			
6	1024	2048	4096			
7	2048	4096	8192			
8	2048	4096	8192			
9	2048	4096	8192			
10	2048	4096	8192			
11	2048	4096	8192			
12	2048	4096	8192			
13	2048	4096	8192			

- 6. The input signal starts with the first symbol of an ISDB-T signal frame.
- 7. Parameter Details

Mode specifies transmission mode 2K (Mode 1), 4K (Mode 2), or 8K (Mode 3) defined in ISDB-T.

MappingMode specifies signal constellation and mapping: DQPSK, QPSK, 16QAM, or 64QAM.


Segments specifies the number of segments per layer.

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction (1/32, 1/16, 1/8, or 1/4) of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.

OversamplingOption specifies the oversampling ratio of the transmission signal. Ratios 1, 2, 4, 8, 16, and 32 are supported in this model. For example, if Ratio 2 is selected, FFT size of the demodulator will double; if Ratio 1 is selected no oversampling will be performed.

References

DTV_ISDBOFDMDemod_ThreeLay

Description: Three-layer OFDM demodulation of ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBOFDMDemod_ThreeLay

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingModeA	signal constellations and mapping of layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
SegmentsA	segment number of layer A	1		int	[1, 13]
MappingModeB	signal constellations and mapping of layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B DQPSK		enum	
SegmentsB	segment number of layer B	4		int	[1, 13]
MappingModeC	signal constellations and mapping of layer C: C DQPSK, C QPSK, C QAM-16, C QAM-64	C QPSK		enum	
SegmentsC	segment number of layer C	8		int	[1, 13]
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	

Pin Inputs

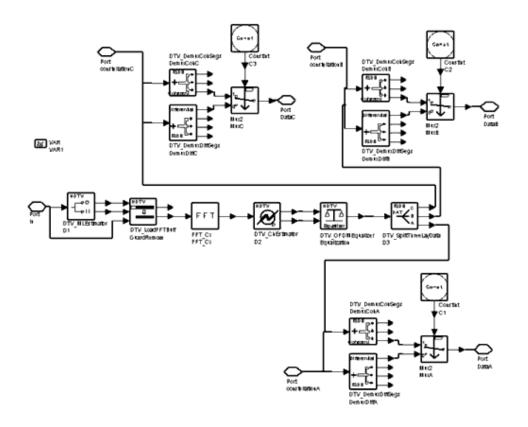
Pin Name Description Signal Type

1 In input data complex

Pin Outputs

Pin	Name	Description	Signal Type
2	DataA	output data of layer A	complex
3	DataB	output data of layer B	complex
4	DataC	output data of layer C	complex
5	constellationA	constellation signal after OFDM demodulation of layer A	complex
6	constellationB	constellation signal after OFDM demodulation of layer B	complex
7	constellationC	constellation signal after OFDM demodulation of layer C	complex

Notes/Equations


1. This subnetwork model demodulates a 3-layer OFDM signal in an ISDB-T 3-layer

receiver.

2. The schematic for this subnetwork is shown in <u>DTV_ISDBOFDMDemod_ThreeLay</u> <u>Schematic</u>.

The subnetwork estimates the beginning of input symbols and removes the guard interval, then demodulates the signal with an FFT. After channel estimation and equalization, the data stream is split into 3-layer data. For each layer, one copy of the signal is exported to port constellation *X* (*X* represents *A*, *B*, or *C*) for MER measurement, and one copy is de-multiplexed and pure data carriers are exported to port Data *X*.

- Each firing, port In consumes (1+GuardInterval) × FFTSize × OverSamplingOption particles, port DataX exports 96×pow(2, Mode) × SegmentsX particles, port constellationX exports 108×pow(2, Mode) × SegmentsX particles.
- 4. This model introduces a delay of one OFDM symbol, so when port constellation X is connected to the reference signal from signal source for MER measurement, the delay of size 108×pow(2, Mode)×Segments X should be considered.
- 5. The input signal starts with the first symbol of an ISDB-T signal frame.

DTV_ISDBOFDMDemod_ThreeLay Schematic

References

DTV_ISDBOFDMDemod_TwoLay

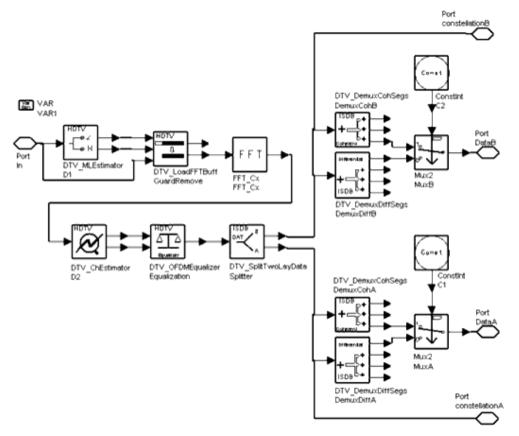
Description: Two-layer OFDM demodulation of ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBOFDMDemod_TwoLay

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingModeA	signal constellations and mapping of layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
SegmentsA	segment number of layer A	5		int	[1, 13]
MappingModeB	signal constellations and mapping of layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B QAM-64		enum	
SegmentsB	segment number of layer B	8		int	[1, 13]
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	In	input data	complex


Pin Outputs

Pin	Name	Description	Signal Type
2	DataA	output data of layer A	complex
3	DataB	output data of layer B	complex
4	constellationA	constellation signal after OFDM demodulation of layer A	complex
5	constellationB	constellation signal after OFDM demodulation of layer B	complex

Notes/Equations

1. This subnetwork model demodulates a 2-layer OFDM signal in an ISDB-T 2-layer receiver. The schematic for this subnetwork is shown below.

DTV_ISDBOFDMDemod_TwoLay Schematic

The subnetwork estimates the start of input symbols, removes the guard interval, then demodulates the signal with an FFT. After channel estimation and equalization, the data stream is split into 2-layer data. For each layer, one copy of the signal is exported to port constellation X (X represents A or B) for MER measurement, one copy is de-multiplexed, and pure data carriers are exported to port Data X.

- 2. Each firing, port In consumes (1+GuardInterval) × FFTSize × OversamplingOption particles, port Data X exports 96 × pow(2, Mode) × Segments X particles, port constellation X exports 108 × pow(2, Mode) × Segments X particles.
- 3. This model introduces a delay of one OFDM symbol, so when port constellationX is connected to the reference signal from signal source for MER measurement, the delay of size 108×pow(2, Mode)×SegmentsX must be considered.
- 4. The input signal starts with the first symbol of an ISDB-T signal frame.

References

DTV_ISDBOFDMMod_OneLay

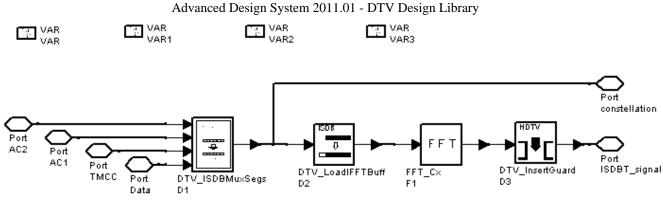
Description: One-layer OFDM modulation of ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBOFDMMod_OneLay

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1			enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK			enum	
Segments	number of segments per layer	13			int	[1, 13]
GuardInterval	guard interval (fractional FFT size)	1/32			real	[0, 1]
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1	S		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	Data	input data	complex
2	ТМСС	TMCC information for different layers	complex
3	AC1	ancillary information for auxiliary channel 1	complex
4	AC2	ancillary information for auxiliary channel 2 (DQPSK only)	complex

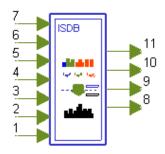

Pin Outputs

Pin	Name	Description	Signal Type
5	ISDBT_signal	ISDB-T signal	complex
6	constellation	constellation signal before IFFT	complex

Notes/Equations

1. This subnetwork model performs OFDM frame adaptation, IFFT, and guard interval insertion for ISDB-T one-layer transmission. The schematic for this subnetwork is shown below.

DTV_ISDBOFDMMod_OneLay Schematic


2. For differential modulation (DQPSK), the CP serves as the SP (scattered pilot) of a synchronous modulation segment when the differential modulation segment at the lowermost frequency is adjacent to one of the synchronous modulation segments. The CP is therefore provided at this low-frequency end.

The TMCC and AC (AC1, AC2) carriers are randomly arranged with regard to frequency in order to reduce degradation caused by periodic dips on channel characteristics under a multi-path environment. AC carriers not only serve as AC pilot signals, but can be used as carriers for additional transmission control information. Note that AC1 carriers for differential modulation segments are arranged at the same positions as those for the synchronous modulation segments.

3. For synchronous modulation (QPSK, 16QAM, 64QAM), the SP is inserted into a segment once every 12 carriers in the carrier direction, and once every 4 symbols in the symbol direction. The AC1 carrier arrangement for synchronous modulation is the same as that for differential modulation. (AC2 is used for differential modulation only).

References

DTV_ISDBOFDMMod_ThreeLay

Description: Three-layer OFDM modulation of ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBOFDMMod_ThreeLay

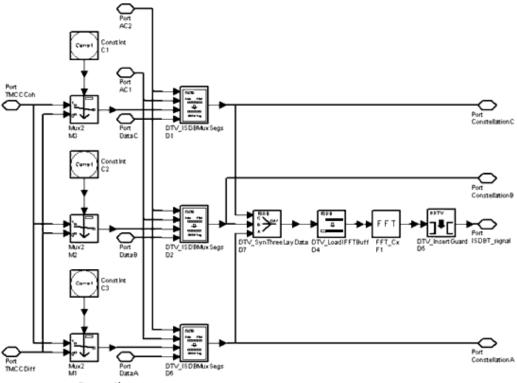
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingModeA	signal constellations and mapping of layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
SegmentsA	segment number of layer A	1		int	[1, 13]
MappingModeB	signal constellations and mapping of layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B DQPSK		enum	
SegmentsB	segment number of layer B	4		int	[1, 13]
MappingModeC	signal constellations and mapping of layer C: C DQPSK, C QPSK, C QAM-16, C QAM-64	C QPSK		enum	
SegmentsC	segment number of layer C	8		int	[1, 13]
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	DataA	input data of layer A	complex
2	DataB	input data of layer B	complex
3	DataC	input data of layer C	complex
4	TMCCDiff	TMCC information for differential layers	complex
5	TMCCCoh	TMCC information for coherent layers	complex
6	AC1	ancillary information for auxiliary channel 1	complex
7	AC2	ancillary information for auxiliary channel 2 (DQPSK only)	complex

Pin Outputs


Pin	Name	Description	Signal Type
8	ISDBT_signal	OFDM three-layer base-band signal	complex
9	constellationA	constellation signal of layer A before IFFT	complex
10	constellationB	constellation signal of layer B before IFFT	complex
11	constellationC	constellation signal of layer C before IFFT	complex

Notes/Equations

1. This subnetwork model implements OFDM frame adaptation, IFFT, and guard interval insertion for ISDB-T 3-layer transmission.

The schematic for the subnetwork is shown below.

DTV_ISDBOFDMMod_ThreeLay Schematic

2. Parameter Details

SegmentsA is set to 1 permanently.

SegmentsA+SegmentsB+SegmentsC=13 is required.

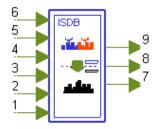
SegmentsB and SegmentsC cannot be 0.

GuardInterval value is 1/32, 1/16, 1/8 or 1/4 (the ratio of guard interval length to useful symbol length).

OversamplingOption is Ratio 1, Ratio 2, \dots , Ratio 32, which indicates the ratio of the output sampling frequency to the basic sampling frequency is 1, 2, \dots , 32.

Advanced Design System 2011.01 - DTV Design Library

3. Each firing, one OFDM symbol with guard interval is generated. The number of data, TMCC, AC1, and AC2 particles consumed in one OFDM symbol are listed in the table below.


Particles Consumed in One OFDM Symbol

Mode	Data Segment A	Data Segment B	-		TMCC Differential		AC2
1	96×SegmentsA	96×SegmentsB	96×SegmentsC	1	1	2	4
2	192×SegmentsA	192×SegmentsB	192×SegmentsC	1	1	4	9
3	384×SegmentsA	384×SegmentsB	384×SegmentsC	1	1	8	19

- 4. TMCCCoh always consumes particles whether or not a coherent segment exists.
- 5. TMCCDiff always consumes particles whether or not a differential segment exists.
- 6. AC2 always consumes particles whether or not a differential segment exists.
- 7. Each frame, 204 TMCC consumed particles are generated as follows:
 - The 203-bit original TMCC bits are preceded with initialization bit 0 to form a 204-bit group.
 - The 204-bit group is differential coded with the initialization bit.
 - Each differential coded bit is replaced with +1 for 0 and -1 for 1.
- 8. Each frame, 203 OFDM symbols are used to transmit AC1 bits.
 - AC1 particles needed in each frame are generated as follows:
 - AC1NumPerSeg bits of 0 are preceded with the original 203×AC1NumPerSeg AC1 bits, where AC1NumPerSeg represents the number of AC1 pilots per segment.
 - 204×AC1NumPerSeg bits obtained from the first step are differential coded with these initial bits, here the differential coding delay is AC1NumPerSeg bits.
 - $\circ\,$ Each of the 204×AC1NumPerSeg differential coded bits is replaced with +1 for 0 and -1 for 1.
 - For example, in Mode 1, each OFDM symbol consumes 2 AC1 bits, assume the original AC1 bits are 1 1, 1 1, 1 1, ...
 - Preceding the initial bits, we get 0 0, 1 1, 1 1, 1 1, ...
 - After differential coding, 0 0, 1 1, 0 0, 1 1, ... are obtained.
 - +1 + 1, -1 1, +1 + 1, -1 1, ... suitable for the subnetwork are generated.
- 9. While AC2 is similar to AC1, it is used for differential segments only.

References

DTV_ISDBOFDMMod_TwoLay

Description: Two-layer OFDM modulation of ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBOFDMMod_TwoLay

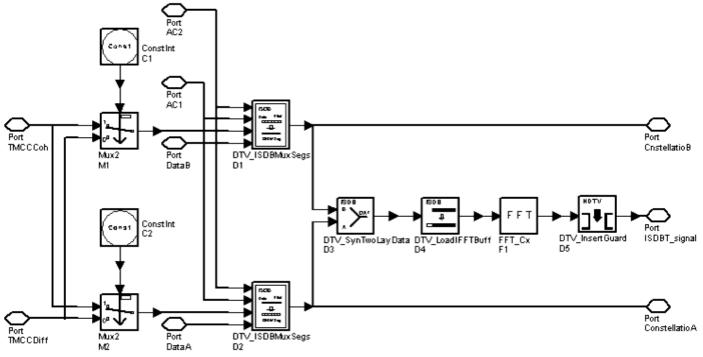
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingModeA	signal constellations and mapping of layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
SegmentsA	segment number of layer A	5		int	[1, 13]
MappingModeB	signal constellations and mapping of layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B QAM- 64		enum	
SegmentsB	segment number of layer B	8		int	[1, 13]
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	

Pin Inputs

Name	Description	Signal Type
DataA	input data of layer A	complex
DataB	input data of layer B	complex
TMCCDiff	TMCC information for differential layers	complex
TMCCCoh	TMCC information for coherent layers	complex
AC1	ancillary information for auxiliary channel 1	complex
AC2	ancillary information for auxiliary channel 2 (DQPSK only)	complex
	DataA DataB TMCCDiff TMCCCoh AC1	DataAinput data of layer ADataBinput data of layer BTMCCDiffTMCC information for differential layersTMCCcohTMCC information for coherent layersAC1ancillary information for auxiliary channel 1

Pin Outputs


Pin	Name	Description	Signal Type
7	ISDBT_signal	ISDB-T two-layer base-band signal	complex
8	constellationA	constellation signal of layer A before IFFT	complex
9	constellationB	constellation signal of layer B before IFFT	complex

Notes/Equations

1. This subnetwork model implements OFDM segment adaptation, IFFT, and guard interval insertion for ISDB-T 2-layer transmission.

Advanced Design System 2011.01 - DTV Design Library The schematic for this subnetwork is shown below.

DTV_ISDBOFDMMod_TwoLay Schematic

2. Parameter Details

SegmentsA+SegmentsB=13 is required.

SegmentsB cannot be 0.

GuardInterval value is 1/32, 1/16, 1/8 or 1/4 (the ratio of guard interval length to useful symbol length).

OversamplingOption is Ratio 1, Ratio 2, \dots , Ratio 32, which indicates the ratio of the output sampling frequency to the basic sampling frequency is 1, 2, \dots , 32.

3. Each firing, the subnetwork generates one OFDM symbol with guard interval. The number of data, TMCC, AC1, and AC2 particles consumed in one OFDM symbol are listed in in the table below.

Particles Consumed in One OFDM Symbol

Mode	Data Segment A	Data Segment B		TMCC Differential	AC1	AC2
1	96×SegmentsA	96×SegmentsB	1	1	2	4
2	192×SegmentsA	192×SegmentsB	1	1	4	9
3	384×SegmentsA	384×SegmentsB	1	1	8	19

- 4. TMCCCoh always consumes particles whether or not a coherent segment exists.
- 5. TMCCDiff always consumes particles whether or not a differential segment exists.
- 6. AC2 always consumes particles whether or not a differential segment exists.
- 7. Each frame, 204 TMCC consumed particles are generated as follows:
 - The original 203 TMCC bits are preceded with initialization bit 0 to form a 204bit group.
 - The 204-bit group is differential coded with the initialization bit.

Advanced Design System 2011.01 - DTV Design Library

• Each of the differential coded bits are replaced with +1 for 0 and -1 for 1.

- 8. Each frame, 203 OFDM symbols are used to transmit AC1 bits.
 - AC1 particles needed in each frame are generated as follows:
 - AC1NumPerSeg bits of 0 are preceded with the original 203×AC1NumPerSeg AC1 bits, where AC1NumPerSeg represents the number of AC1 pilots per segment.
 - 204×AC1NumPerSeg bits obtained in the first step are differential coded with these initial bits; here the differential coding delay is AC1NumPerSeg bits.
 - Each of the 204×AC1NumPerSeg differential coded bits are replaced with +1 for 0 and -1 for 1.
 - For example, in Mode 1, each OFDM symbol consumes 2 AC1 bits, assume the original AC1 bits are 1 1, 1 1, 1 1, ...
 - $\circ\,$ Preceding initial bits, we get 0 0, 1 1, 1 1, 1 1, ...
 - After differential coding, 0 0, 1 1, 0 0, 1 1, ... are obtained.
 - +1 +1, -1 -1, +1 +1, -1 -1, ... suitable for the subnetwork are then generated.
- 9. While AC2 is similar to AC1, it is used for differential segments only.

References

DTV_ISDBOneLayReceiver

Description: ISDB-T one-layer receiver **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBOneLayReceiver

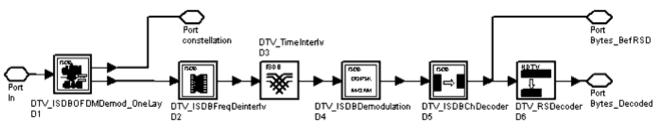
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
CodeRate	convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK		enum	
TimeInterlv	length of time interleaver: I_000, I_001, I_010, I_011, I_100	I_000		enum	
Segments	number of segments: Seg 0 is not allowed, Seg 1, Seg 2, Seg 3, Seg 4, Seg 5, Seg 6, Seg 7, Seg 8, Seg 9, Seg 10, Seg 11, Seg 12, Seg 13	Seg 13		enum	
TrunLen	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5, ∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	In	input OFDM baseband signal	complex

Pin Outputs


Pin	Name	Description	Signal Type
2	constellation	signal constellation after OFDM demodulation	complex
3	Bytes_BefRSD	information bytes before RS decoder	int
4	Bytes_Decoded	information bytes after RS decoder	int

Notes/Equations

1. This 1-layer ISDB-T baseband receiver subnetwork performs 1-layer OFDM demodulation, frequency deinterleaving, time deinterleaving, demapping and bit-wise deinterleaving, inner decoding (Viterbi), byte-wise deinterleaving, derandomizing and Reed-Solomon decoding.

The schematic for this subnetwork is shown below.

DTV_ISDBOneLayReceiver Schematic

2. FFT size is given in the table below.

FFT Size

Segment	FFT Size			
	Mode 1	Mode 2	Mode 3	
1	256	512	1024	
2	512	1024	2048	
3	512	1024	2048	
4	1024	2048	4096	
5	1024	2048	4096	
6	1024	2048	4096	
7	2048	4096	8192	
8	2048	4096	8192	
9	2048	4096	8192	
10	2048	4096	8192	
11	2048	4096	8192	
12	2048	4096	8192	
13	2048	4096	8192	

- 3. The input signal starts with the first symbol of an ISDB-T signal frame.
- 4. Parameter Details

Mode specifies transmission mode 2K (Mode 1), 4K (Mode 2), or 8K (Mode 3) defined in ISDB-T.

OversamplingOption specifies the oversampling ratio of transmission signal. Ratios 1, 2, 4, 8, 16, and 32 are supported in this model. For example, if Ratio 2 is selected, FFT size of the demodulator will double; if Ratio 1 is selected no oversampling will be performed.

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction (1/32, 1/16, 1/8, or 1/4) of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.

CodeRate specifies the inner code rate 1/2, 2/3, 3/4, 5/6, or 7/8.

MappingMode specifies signal constellation and mapping for DOPSK, OPSK, 16QAM, or 64QAM.

TimeInterly specifies the time domain interleaver type of the signal: I 000, I 001, I_010, I_011, or I_100.

Segments specifies the number of segments.

TrunLen specifies the truncation length $(1 \times 8 \text{ bits}, 2 \times 8 \text{ bits})$, in bytes, in the Viterbi decoding algorithm.

5. Output Delays

DTV ISDBChDecoder consists of Viterbi decoder, byte-wise deinterleaver and derandomizer. Viterbi decoder introduces different delay for different path memory truncation length (TrunLen parameter). For BER measurement synchronization, the delay between byte-interleaver and byte deinterleaver must be adjusted to a multiple of 12 bytes, and the delay between randomizer and derandomizer must be adjusted to a multiple of 204 bytes. Here, both delays are adjusted to a multiple of 204 bytes. The basic delay calculation of an ISDB-T receiver is shown in Delay Calculation of **ISDB-T Receiver.**

Assuming MapRate={2, 2, 4, 6}, CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8}, then MapRate[MappingMode+1] represents the bit number mapped onto one data carrier, and CodeRateFrac[CodeRate+1] represents the inner coder rate, we get:

Delay Calculation of ISDB-T Receiver

Var VAR

VAR1 MapRate={2, 2, 4, 6} CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8} D_OFDMMod=96*Segments*2^Mode D_TimeInterlvT=if (TimeInterlv==0) then (0) else (96*Segments*204*2^TimeInterlv) endif D TimeInterly=if ((TimeInterly==1) && (Mode==2)) then (D TimeInterlyT*2) else (D TimeInterlyT) endif D_Modulation= 96*2/Mode*MapRate[MappingMode+1]*2*Segments D_VB=8*TrunLen D_ByteInterlv=204*24*CodeRateFrac[CodeRate+1]*MapRate[MappingMode+1]/2*2*Mode*Segments D_Carrier=D_OFDMMod+D_TimeInterlv D AfterVB=(D Carrier*MapRate[MappingMode+1]+D Modulation)*CodeRateFrac[CodeRate+1]+D VB

D_Residual=D_AfterVB/8-204*int(D_AfterVB/8/204)

D_ByteAdjust=if (D_Residual==0) then (0) else (204-D_Residual) endif

D_AfterDerandomize=D_AfterVB/8+D_ByteAdjust+D_ByteInterIv

D_AfterRSDecoder=D_AfterDerandomize*188/204

where

D OFDMMod \times 108/96 is the delay between the *Constellation* pins of DTV_ISDBOneLaySource and DTV_ISDBOneLayReceiver.

D_AfterDerandomize is the delay between pins *Bytes_AftRSC* in DTV_ISDBOneLaySource and *Bytes_BefRSD* in DTV_ISDBOneLayReceiver.

D_AfterRSDecoder is the delay between pins *Bytes_Uncoded* in DTV ISDBOneLaySource and *Bytes Decoded* in DTV ISDBOneLayReceiver.

When connecting the receiver to the signal source in MER and BER measurements, reference signal from the signal generator must be delayed according to the formula

References

DTV_ISDBOneLayReceiver_RF

Description: ISDB-T one-layer RF receiver **Library:** DTV, ISDB-T **Class:** TSDFDTV_ISDBOneLayReceiver_RF

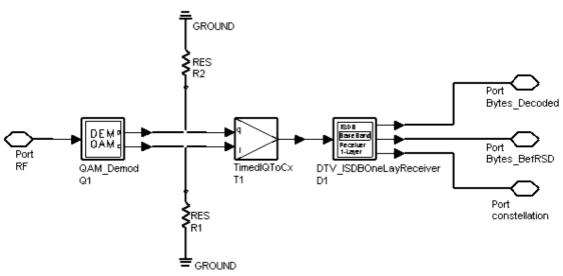
Parameters

Name	Description	Default	Unit	Туре	Range
RIn	input resistance	DefaultRIn	Ohm	real	(0, ∞)
RTemp	physical temperature, in degrees C	DefaultRTemp	Celsius	real	[- 273.15, ∞)
GainImbalance	Gain imbalance, Q vs I	0.0	dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
FCarrier	carrier frequency	611.0MHz	Hz	real	(0,∞)
Sensitivity	voltage output sensitivity, Vout/Vin	1		real	(-∞, ∞)
Phase	reference phase in degrees	0.0	deg	real	(-∞, ∞)
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
CodeRate	convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK		enum	
TimeInterlv	length of time interleaver: I_000, I_001, I_010, I_011, I_100	I_000		enum	
Segments	number of segments: Seg 0 is not allowed, Seg 1, Seg 2, Seg 3, Seg 4, Seg 5, Seg 6, Seg 7, Seg 8, Seg 9, Seg 10, Seg 11, Seg 12, Seg 13	Seg 13		enum	
TrunLen	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5, ∞)

Pin Inputs

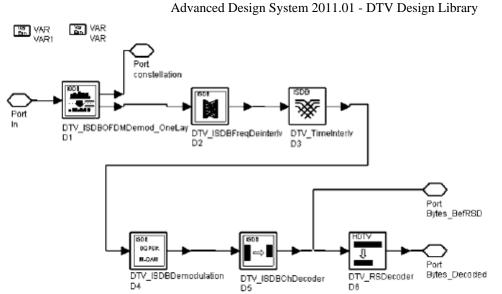
Pin	Name	Description	Signal Type	
1	RF	received OFDM signal to be demodulated	timed	

Pin Outputs


Advanced Design System 2011.01 - DTV Design Library

Pin	Name	Description	Signal Type
2	constellation	signal constellation after OFDM demodulation	complex
3	Bytes_BefRSD	information bytes before RS decoder	int
4	Bytes_Decoded	information bytes after RS decoder	int

Notes/Equations


1. This subnetwork model is a 1-layer ISDB-T RF receiver. The schematic for this subnetwork is shown below.

DTV_ISDBOneLayReceiver_RF Schematic

- 2. The input timed signal is demodulated from RF to baseband and fed to the ISDB-T 1layer receiver.
- 3. The baseband receiver (DTV_ISDBOneLayReceiver) schematic is shown below.

DTV_ISDBOneLayReceiver Schematic

4. FFT size is given in the table below.

FFT Size

Segment	FFT Size			
	Mode 1	Mode 2	Mode 3	
1	256	512	1024	
2	512	1024	2048	
3	512	1024	2048	
4	1024	2048	4096	
5	1024	2048	4096	
6	1024	2048	4096	
7	2048	4096	8192	
8	2048	4096	8192	
9	2048	4096	8192	
10	2048	4096	8192	
11	2048	4096	8192	
12	2048	4096	8192	
13	2048	4096	8192	

- 5. The input signal starts with the first symbol of an ISDB-T signal frame.
- 6. Baseband Parameter Details

Mode specifies transmission mode 2K (Mode 1), 4K (Mode 2), or 8K (Mode 3) defined in ISDB-T.

OversamplingOption specifies the oversampling ratio of the transmission signal. Ratios 1, 2, 4, 8, 16, and 32 are supported in this model. For example, if Ratio 2 is selected, FFT size of the demodulator will double; if Ratio 1 is selected no oversampling will be performed.

GuardInterval specifies the guard interval (also called cyclic extension)

length for each symbol, as a fraction (1/32, 1/16, 1/8, or 1/4) of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.

CodeRate specifies the inner code rate 1/2, 2/3, 3/4, 5/6, or 7/8.

MappingMode specifies signal constellation and mapping for DQPSK, QPSK, 16QAM, or 64QAM.

TimeInterlv specifies the time domain interleaver type of the signal: I_000, I_001, I_010, I_011, or I_100.

Segments specifies the number of segments.

TrunLen specifies the truncation length (1×8 bits, 2×8 bits), in bytes, in the Viterbi decoding algorithm.

7. Output Delays

DTV_ISDBChDecoder consists of Viterbi decoder, byte-wise deinterleaver and derandomizer. Viterbi decoder introduces different delay for different path memory truncation length (TrunLen parameter). For BER measurement synchronization, the delay between byte-interleaver and byte deinterleaver must be adjusted to a multiple of 12 bytes and the delay between randomizer and derandomizer must be adjusted to a multiple of 204 bytes. Here, both delays are adjusted to a multiple of 204bytes. The basic delay calculation of an ISDB-T receiver is shown in <u>Delay Calculation of ISDB-T Receiver</u>.

Assuming MapRate={2, 2, 4, 6}, CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8}, then MapRate[MappingMode+1] represents the bit number mapped onto one data carrier, and CodeRateFrac[CodeRate+1] represents the inner coder rate, we get:

Delay Calculation of ISDB-T Receiver

Var VAR VAR1 MapRate={2, 2, 4, 6} CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8} D_OFDMMod=96*Segments*2^Mode D_TimeInterlvT=if (TimeInterlv==0) then (0) else (96*Segments*204*2^TimeInterlv) endif D_TimeInterlv=if ((TimeInterlv==1) && (Mode==2)) then (D_TimeInterlvT*2) else (D_TimeInterlvT) endif D_Modulation= 96*2*Mode*MapRate[MappingMode+1]*2*Segments D_VB=8*TrunLen D_ByteInterIv=204*24*CodeRateFrac[CodeRate+1]*MapRate[MappingMode+1]/2*2*Mode*Segments D_Carrier=D_OFDMMod+D_TimeInterlv D_AfterVB=(D_Carrier*MapRate[MappingMode+1]+D_Modulation)*CodeRateFrac[CodeRate+1]+D_VB D_Residual=D_AfterVB/8-204*int(D_AfterVB/8/204) D_ByteAdjust=if (D_Residual==0) then (0) else (204-D_Residual) endif D_AfterDerandomize=D_AfterVB/8+D_ByteAdjust+D_ByteInterlv

D_AfterRSDecoder=D_AfterDerandomize*188/204

where

D_OFDMMod \times 108/96 is the delay between the *Constellation* pins in DTV_ISDBOneLaySource and DTV_ISDBOneLayReceiver.

D_AfterDerandomize is the delay between pins *Bytes_AftRSC* in DTV_ISDBOneLaySource and *Bytes_BefRSD* in DTV_ISDBOneLayReceiver.

Advanced Design System 2011.01 - DTV Design Library D_AfterRSDecoder is the delay between pins *Bytes_Uncoded* in DTV_ISDBOneLaySource and *Bytes_Decoded* in DTV_ISDBOneLayReceiver.

When connecting the receiver to the signal source in MER and BER measurements, the reference signal from the signal generator must be delayed according to the formula in <u>Delay Calculation of ISDB-T Receiver</u>.

8. RF Parameter Details

GainImbalance and PhaseImbalance add certain impairments to the ideal output RF signal. Impairments are added as described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

 $V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin\left(\omega_{c}t + \frac{\phi\pi}{180}\right)\right)$

where V_1 (t) is the in-phase RF envelope, V_2 (t) is the quadrature phase RF envelope,

g is the gain imbalance $g = 10^{\frac{GainImbalance}{20}}$

and, Φ (in degrees) is the phase imbalance.

References

DTV_ISDBOneLaySource

Description: ISDB-T one-layer signal source **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBOneLaySource

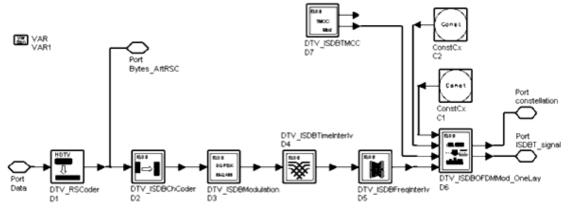
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
CodeRate	convolutional Code Rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK		enum	
TimeInterlv	length of time interleaver: I_000, I_001, I_010, I_011, I_100	I_000		enum	
Segments	number of segments: Seg 0 is not allowed, Seg 1, Seg 2, Seg 3, Seg 4, Seg 5, Seg 6, Seg 7, Seg 8, Seg 9, Seg 10, Seg 11, Seg 12, Seg 13	Seg 13		enum	

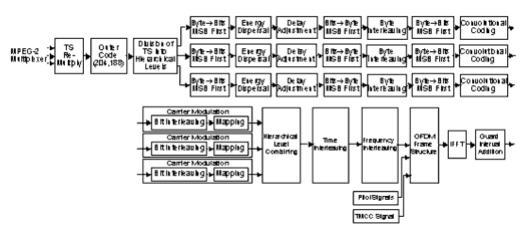
Pin Inputs

		Pin	Name	Description	Signal Type
--	--	-----	------	-------------	-------------

1 Data input data int


Pin Outputs

Pin	Name	Description	Signal Type
2	ISDBT_signal	ISDB-T signal	complex
3	constellation	constellation signal before IFFT	complex
4	Bytes_AftRSC	information bytes after RS coder	int


Notes/Equations

1. This subnetwork model provides an ISDB-T one-layer signal source. It generates one OFDM symbol each firing.

The schematic for this subnetwork is shown below.

 A transport stream (TS) input (defined in *MPEG-2 Systems*) is subjected to multiple channel-coding steps, bit-wise interleaving and data mapping, time interleaving, frequency interleaving, and is sent as a single OFDM signal. The ISDB-T signal source format follows the ISDB-T specification. The figure below shows the functional block diagram of the ISDB-T baseband system.

ISDB-T Baseband System Functional Block Diagram

The transmission spectrum of television broadcasting consists of 13 successive OFDM blocks (OFDM segments); each bandwidth equals 1/14 of a television broadcast channel bandwidth. An OFDM-segment carrier configuration that allows connection of multiple segments makes it possible to provide an appropriate transmission bandwidth in terms of units of segment width for the target media; at the same time it allows use of the same receiver for ISDB-T and ISDB-T_{SB} (Transmission System for

Digital Terrestrial Sound Broadcasting).

In consideration of the suitability of the distance between SFN stations and the robustness to Doppler shift during mobile-reception, ISDB-T offers three different spacings between OFDM carrier frequencies; these spacings are identified as system modes. Spacings between OFDM carrier frequencies are approximately 4, 2, and 1 kHz in modes 1, 2, and 3, respectively. The number of carriers varies depending on the mode, but the information bit rate that can be transmitted remains the same in all modes.

TMCC signals convey control information that assists in receiver operations.

3. Parameter Details

Mode specifies transmission mode 1, 2, or 3 (defined in ISDB-T

specification).

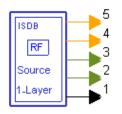
OversamplingOption specifies the oversampling ratio of the transmission signal. Ratios 1, 2, 4, 8, 16, and 32 are supported in this source.

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. Guard intervals 1/4, 1/8, 1/16, and 1/32 are defined in the ISDB-T specification; in this source, GuardInterval is defined as a real value between 0.0 and 1.0. Users can set any value between 0.0 and 1.0, not just 1/4, 1/8, 1/16 and 1/32. The value must match the guard interval length actually used in the input signal so demodulation will work properly.

CodeRate is defined as code rate of stream; rates 1/2, 2/3, 3/4, 5/6 and 7/8 are supported in this source.

MappingMode specifies signal constellations and ISDB-T signal source mapping; modes DQPSK, QPSK, 16-QAM, and 64-QAM are supported in this source.

TimeInterly specifies the time interleaving length. There are five different values for each mode.


Segments specifies the number of segments. Recommended IFFT sizes are given with regard to the total number of segments listed in the following table.

No. of Segments	o. of Segments Mode 1 Mode 2		Mode 3			
	IFFT Order	IFFT Size	IFFT Order	IFFT Size	IFFT Order	IFFT Size
1	8	256	9	512	10	1024
2, 3	9	512	10	1024	11	2048
4, 5, 6	10	1024	11	2048	12	4096
7, 8, 9, 10, 11, 12, 13	11	2048	12	4096	13	8192

Number of Segments and IFFT Sizes

References

DTV_ISDBOneLaySource_RF

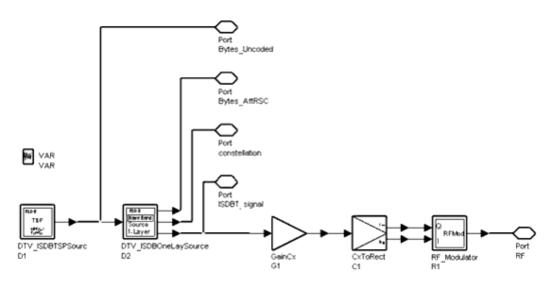
Description: ISDB-T one-layer RF signal source **Library:** DTV, ISDB-T **Class:** TSDFDTV_ISDBOneLaySource_RF

Parameters

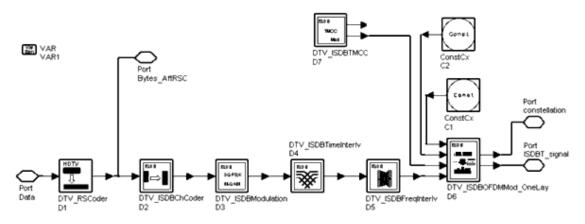
Name	Description	Default	Unit	Туре	Range
ROut	output resistance	DefaultROut	Ohm	real	(0,∞)
RTemp	physical temperature, in degrees C	DefaultRTemp	Celsius	real	[- 273.15, ∞)
FCarrier	carrier frequency	611.0MHz	Hz	real	(0,∞)
Power	modulator output power	40mW	W	real	(0,∞)
BasicSamplingRate	basic sampling rate	(2048/252.0)MHz	Hz	real	(0,∞)
MirrorSpectrum	Mirror spectrum about carrier?: NO, YES	NO		enum	
GainImbalance	Gain imbalance, Q vs I	0.0	dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
I_OriginOffset	I origin offset (percent)	0.0		real	(-∞, ∞)
Q_OriginOffset	Q origin offset (percent)	0.0		real	(-∞, ∞)
IQ_Rotation	IQ rotation	0.0	deg	real	(-∞, ∞)
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
CodeRate	convolutional Code Rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM 16, QAM 64	DQPSK		enum	
TimeInterlv	length of time interleaver: I_000, I_001, I_010, I_011, I_100	I_000		enum	
Segments	number of segments: Seg 0 is not allowed, Seg 1, Seg 2, Seg 3, Seg 4, Seg 5, Seg 6, Seg 7, Seg 8, Seg 9, Seg 10, Seg 11, Seg 12, Seg 13	Seg 13		enum	
DataType	payload data type: PN9, PN15, FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0, _32_1_32_0, _64_1_64_0	PN9		enum	

Pin Outputs

Advanced	Design	System	2011.01	- DTV	Design L	library

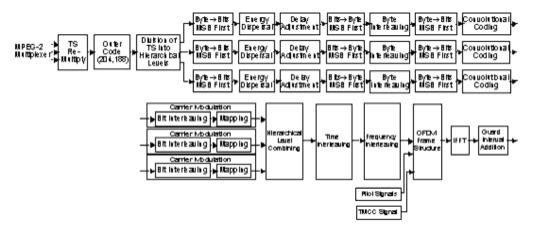

Pin	Name	Description	Signal Type
1	RF	RF signal	timed
2	ISDBT_signal	ISDB-T signal	complex
3	constellation	constellation signal before IFFT	complex
4	Bytes_AftRSC	information bytes after RS coder	int
5	Bytes_Uncoded	information bytes of transport packet	int

Notes/Equations


1. This subnetwork model integrates an RF modulator with the baseband signal source. The ISDB-T baseband signal is fed into the RF modulator. The RF signal is timed signal after RF modulation.

The schematic for this subnetwork is shown below.

DTV_ISDBOneLaySource_RF Schematic



2. The ISDB-T signal source format follows the ISDB-T specification. The schematic for DTV_ISDBOneLaySource is shown below.

DTV_ISDBOneLaySource Schematic

Baseband System Functional Block Diagram

3. Parameter Details

FCarrier defines the RF frequency for the ISDB signal.

Power defines the power level for FCarrier.

BasicSamplingRate indicates basic sampling rate.

The MirrorSpectrum is used to conjugate the input signal (when set to YES) before any other processing is done.

GainImbalance, PhaseImbalance, I_OriginOffset, Q_OriginOffset, and IQ_Rotation parameters are used to add certain impairments to the ideal output RF signal. Impairments are added in the order described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. RF is given by:

$$V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin\left(\omega_{c}t + \frac{\phi\pi}{180}\right)\right)$$

where

A is a scaling factor that depends on the Power and ROut parameters specified by the user

 V_1 (t) is the in-phase RF envelope

 V_2 (t) is the quadrature phase RF envelope

g is the gain imbalance

$$g = 10 \frac{GainImbalance}{20}$$

 Φ (in degrees) is the phase imbalance

The V3(t) signal is rotated by IQ_Rotation degrees. I_OriginOffset and Q_OriginOffset are then applied to the rotated signal. Note that the amounts specified are percentages with respect to the output rms voltage. The output rms voltage is given by sqrt(2×ROut×Power). Mode is used to select transmission mode of 1, 2, or 3 defined in ISDB-T.

OversamplingOption indicates the oversampling ratio of transmission signal. Oversampling ratios 1, 2, 4, 8, 16, and 32 are supported in this source.

OversamplingOption is Ratio 1, Ratio 2, \dots , Ratio 32, which indicates the oversampling ratio of transmission signal is 1, 2, \dots , 32.

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol time, as a fraction of the FFT time period. Guard intervals 1/4, 1/8, 1/16, and 1/32 are defined in the ISDB-T specification; in this source, GuardInterval is specified as a real value between 0.0 and 1.0. Users can set any value between 0.0 and 1.0; the value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.

CodeRate is defined as code rate of stream. Rates 1/2, 2/3, 3/4, 5/6, and 7/8 are supported in this source.

MappingMode specifies signal constellation and ISDB-T signal source mapping. Modes DQPSK, QPSK, 16-QAM, and 64-QAM are supported in this source.

TimeInterly specifies the time interleaving length. Time interleaving lengths, based on mode, are given in the following table.

Time Interleaving Length

TimeInterlv	Time Interleaving Length I (Mode 1)	Time Interleaving Length I (Mode 2)	Time Interleaving Length I (Mode 3)
I_000	0	0	0
I_001	4	2	1
I_010	8	4	2
I_011	16	8	4
I_100	32	16	8

Segments specifies the number of segments. Recommended IFFT sizes are given in the following table.

Number of Segments and IFFT Sizes

No. of Segments	Mode 1		Mode 2		Mode 3		
	IFFT Order	IFFT Size	IFFT Order	IFFT Size	IFFT Order	IFFT Size	
1	8	256	9	512	10	1024	
2, 3	9	512	10	1024	11	2048	
4, 5, 6	10	1024	11	2048	12	4096	
7, 8, 9, 10, 11, 12, 13	11	2048	12	4096	13	8192	

References

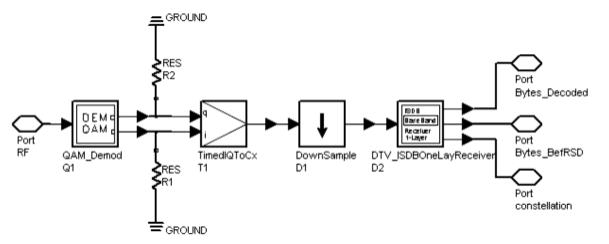
DTV_ISDBPartialReceiver_RF

Description: ISDB-T one-segment RF receiver **Library:** DTV, ISDB-T **Class:** TSDFDTV_ISDBPartialReceiver_RF

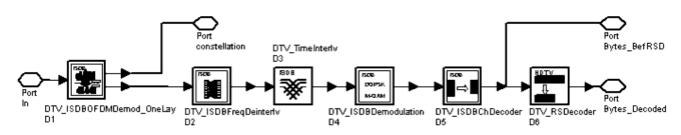
Parameters

Name	Description	Default	Unit	Туре	Range
RIn	input resistance	DefaultRIn	Ohm	real	(0,∞)
RTemp	physical temperature, in degrees C	DefaultRTemp	Celsius	real	[-273.15, ∞)
GainImbalance	Gain imbalance, Q vs I	0.0	dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
FCarrier	carrier frequency	611.0MHz	Hz	real	(0,∞)
Sensitivity	voltage output sensitivity, Vout/Vin	1		real	(-∞, ∞)
Phase	reference phase in degrees	0.0	deg	real	(-∞, ∞)
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
CodeRate	convolutional code rate: DTV 1/2, DTV 2/3, DTV 3/4, DTV 5/6, DTV 7/8	DTV 1/2		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM-16, QAM-64	DQPSK		enum	
TimeInterlv	length of time interleaver: I_000, I_001, I_010, I_011, I_100	I_000		enum	
TrunLen	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5, ∞)

Pin Inputs


Pin	Name	Description	Signal Type
1	RF	received OFDM signal to be demodulated	timed

Pin Outputs


Pin	Name	Description	Signal Type
2	constellation	signal constellation after OFDM demodulation	complex
3	Bytes_BefRSD	information bytes before RS decoder	int
4	Bytes_Decoded	information bytes after RS decoder	int

1. This is a 1-segment ISDB-T RF receiver. The schematic for this subnetwork is shown below.

- 2. The input timed signal is demodulated from RF to baseband and downsampled by a factor of 8; the downsampled signal is fed to the ISDB-T 1-layer receiver whose segment number is set to 1.
- 3. FFT size of the OFDM demodulator in DTV_ISDBOneLayReceiver is 256 when OversamplingOption is set to Ratio 1.
- 4. The input signal starts with the first symbol of an ISDB-T signal frame.
- 5. The baseband receiver (DTV_ISDBOneLayReceiver) schematic is shown below.

DTV_ISDBOneLayReceiver Schematic

6. Baseband Parameter Details

Mode specifies transmission mode 2K (Mode 1), 4K (Mode 2), or 8K (Mode 3) defined in ISDB-T.

OversamplingOption specifies the oversampling ratio of transmission signal. Ratios 1, 2, 4, 8, 16, and 32 are supported in this model. For example, if *Ratio 2* is selected, FFT size of the demodulator will double; if *Ratio 1* is selected no oversampling will be performed.

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction (1/32, 1/16, 1/8, or 1/4) of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.

CodeRate specifies the inner code rate 1/2, 2/3, 3/4, 5/6, or 7/8.

MappingMode specifies signal constellation and mapping for DQPSK, QPSK, 16QAM, or 64QAM.

TimeInterlv specifies time domain interleaver type of the signal: I_000 , I_001 , I_010 , I_011 , or I_100 .

TrunLen specifies the truncation length (1×8 bits, 2×8 bits), in bytes, in the Viterbi decoding algorithm.

7. Output Delays

DTV_ISDBChDecoder consists of Viterbi decoder, byte-wise deinterleaver and derandomizer. Viterbi decoder introduces different delay for different path memory truncation length (parameter TrunLen). For BER measurement synchronization, the delay between byte-interleaver and byte deinterleaver must be adjusted to a multiple of 12 bytes and the delay between randomizer and derandomizer must be adjusted to a multiple of 204 bytes. Here, both delays are adjusted to a multiple of 204bytes. The basic delay calculation of an ISDB-T receiver is shown in <u>Delay Calculation of ISDB-T Partial Receiver</u>.

Assuming MapRate={2, 2, 4, 6}, CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8}, then MapRate[MappingMode+1] represents the bit number mapped onto one data carrier, and CodeRateFrac[CodeRate+1] represents the inner coder rate, we get:

Delay Calculation of ISDB-T Partial Receiver

VAR VAR1

VAR1 MapRate={2, 2, 4, 6}

CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8}

D_OFDMMod=96*Segments*2^Mode

D_TimeInterIvT=if (TimeInterIv==0) then (0) else (96*Segments*204*2^TimeInterIv) endif

D_TimeInterlv=if ((TimeInterlv==1) && (Mode==2)) then (D_TimeInterlvT*2) else (D_TimeInterlvT) endif

D_Modulation= 96*2/Mode*MapRate[MappingMode+1]*2*Segments

D_VB=8*TrunLen

D_ByteInterIv=204*24*CodeRateFrac[CodeRate+1]*MapRate[MappingMode+1]/2*2*Mode*Segments

D_Carrier=D_OFDMMod+D_TimeInterlv

D_AfterVB=(D_Carrier*MapRate[MappingMode+1]+D_Modulation)*CodeRateFrac[CodeRate+1]+D_VB

D_Residual=D_AfterVB/8-204*int(D_AfterVB/8/204)

D_ByteAdjust=if (D_Residual==0) then (0) else (204-D_Residual) endif

D_AfterRSDecoder=D_AfterDerandomize*188/204

where

D_OF *DMMod* \times 108/96 is the delay between the *Constellation* pins of the signal source and DTV_ISDBPartialReceiver_RF.

D_AfterDerandomize is the delay between pins *Bytes_AftRSC* of the signal source and *Bytes_BefRSD* in DTV_ISDBPartialReceiver_RF.

D_AfterRSDecoder is the delay between pins *Bytes_Uncoded* of the signal source and *Bytes_Decoded* in DTV_ISDBPartialReceiver_RF.

When connecting the receiver to signal source in MER and BER measurements, reference signal from the signal generator must be delayed according to the formula

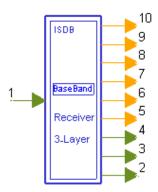
in Delay Calculation of ISDB-T Partial Receiver.

8. RF Parameter Details

GainImbalance and PhaseImbalance add certain impairments to the ideal output RF signal. Impairments are added as described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

$$V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin\left(\omega_{c}t + \frac{\phi\pi}{180}\right)\right)$$


where V_1 (*t*) is the in-phase RF envelope, V_2 (*t*) is the quadrature phase RF envelope,

g is the gain imbalance $g = 10^{\frac{GainImbalance}{20}}$

and, $\boldsymbol{\Phi}$ (in degrees) is the phase imbalance.

References

DTV_ISDBThreeLayReceiver

Description: ISDB-T three-layer receiver **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBThreeLayReceiver

Parameters

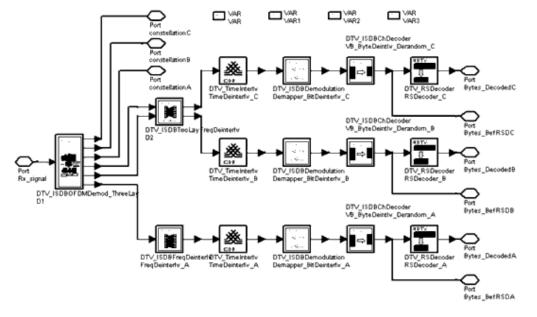
Advanced	Design	System	2011 01 -	DTV	Design	Library
<i>i</i> avanceu	Design	bystem	2011.01	D_{1}	DUSIGI	Library

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0:1]
CodeRateA	convolutional code rate for Layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum	
MappingModeA	signal constellations and mapping for Layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
TimeInterlvA	length of time interleaver for Layer A: A I_000, A I_001, A I_010, A I_011, A I_100	A I_000		enum	
TrunLenA	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5,∞)
SegmentsA	segments number of Layer A: A Seg 0 is not allowed, A Seg 1, A Seg 2, A Seg 3, A Seg 4, A Seg 5, A Seg 6, A Seg 7, A Seg 8, A Seg 9, A Seg 10, A Seg 11	A Seg 1		enum	
CodeRateB	convolutional code rate for Layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 1/2		enum	
MappingModeB	signal constellations and mapping for Layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B DQPSK		enum	
TimeInterlvB	length of time interleaver for Layer B: B I_000, B I_001, B I_010, B I_011, B I_100	B I_000		enum	
TrunLenB	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5,∞)
SegmentsB	segments number of Layer B: B Seg 0 is not allowed, B Seg 1, B Seg 2, B Seg 3, B Seg 4, B Seg 5, B Seg 6, B Seg 7, B Seg 8, B Seg 9, B Seg 10, B Seg 11	B Seg 4		enum	
CodeRateC	convolutional code rate for Layer C: C 1/2, C 2/3, C 3/4, C 5/6, C 7/8	C 1/2		enum	
MappingModeC	signal constellations and mapping for Layer C: C DQPSK, C QPSK, C QAM-16, C QAM-64	C QPSK		enum	
TimeInterlvC	length of time interleaver for Layer C: C I_000, C I_001, C I_010, C I_011, C I_100	C I_000		enum	
TrunLenC	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5,∞)
SegmentsC	segments number of Layer C: C Seg 0 is not allowed, C Seg 1, C Seg 2, C Seg 3, C Seg 4, C Seg 5, C Seg 6, C Seg 7, C Seg 8, C Seg 9, C Seg 10, C Seg 11	C Seg 8		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	Rx_signal	received signal to be demodulated	complex

Pin Outputs


Advanced Design System 2011.01 - DTV Design Library

Pin	Name	Description	Signal Type
2	constellationA	constellation signal after OFDM demodulation of layer A	complex
3	constellationB	constellation signal after OFDM demodulation of layer B	complex
4	constellationC	constellation signal after OFDM demodulation of layer C	complex
5	Bytes_BefRSDA	decoded bytes after Viterbi decoder and de-randomizer of layer A	int
6	Bytes_DecodedA	decoded bytes after Reed Solomon decoder of layer A	int
7	Bytes_BefRSDB	decoded bytes after Viterbi decoder and de-randomizer of layer B	int
8	Bytes_DecodedB	decoded bytes after Reed Solomon decoder of layer B	int
9	Bytes_BefRSDC	decoded bytes after Viterbi decoder and de-randomizer of layer C	int
10	Bytes_DecodedC	decoded bytes after Reed Solomon decoder of layer C	int

Notes/Equations

1. This ISDB-T baseband receiver performs 3-layer OFDM demodulation, frequency deinterleaving, time deinterleaving, demapping and bit-wise deinterleaving, inner decoding (Viterbi), byte-wise deinterleaving, derandomizing, and Reed-Solomon decoding.

The schematic for this subnetwork is shown in DTV_ISDBThreeLayReceiver Schematic.

DTV_ISDBThreeLayReceiver Schematic

- 2. The input signal starts with the first symbol of an ISDB-T signal frame.
- 3. Parameter Details

Mode specifies transmission mode 2K (Mode 1), 4K (Mode 2), or 8K (Mode 3) defined in ISDB-T.

OversamplingOption specifies the oversampling ratio of transmission signal. Ratios 1, 2, 4, 8, 16, and 32 are supported in this model. For example, if Ratio 2 is selected, FFT size of the demodulator will double; if Ratio 1 is selected no oversampling will be performed.

GuardInterval specifies the guard interval (also called cyclic extension)

length for each symbol, as a fraction (1/32, 1/16, 1/8, or 1/4) of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.

CodeRateX (X represents A, B, or C) specifies the inner code rate 1/2, 2/3, 3/4, 5/6, or 7/8.

MappingModeX specifies signal constellation and mapping for DQPSK, QPSK, 16QAM, or 64QAM.

TimeInterlvX is time domain interleaver type of the signal: I_000 , I_001 , I_010 , I_011 , or I_100 .

SegmentsX specifies the number of segments for each layer. SegmentsA+SegmentsB+SegmentsC=13 is required. SegmentsB and SegmentsC cannot be 0. SegmentsA is permanently set to 1.

TrunLenX specifies the truncation length (1×8 bits, 2×8 bits), in bytes, in the Viterbi decoding algorithm.

4. Output Delays

DTV_ISDBChDecoder consists of Viterbi decoder, byte-wise deinterleaver and derandomizer. Viterbi decoder introduces different delay for different path memory truncation length (TrunLen parameter). For BER measurement synchronization, the delay between byte-interleaver and byte deinterleaver must be adjusted to a multiple of 12 bytes, the delay between randomizer and derandomizer must be adjusted to a multiple of 204 bytes. Here, both delays are adjusted to a multiple of 204bytes. The basic delay calculation of an ISDB-T receiver is shown in <u>Delay Calculation of an ISDB-T Receiver</u>; delays for layers A, B, and C are each calculated with their own hierarchical parameters.

Assuming MapRate={2, 2, 4, 6}, CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8}, then MapRate[MappingMode+1] represents the bit number mapped onto one data carrier, and CodeRateFrac[CodeRate+1] represents the inner coder rate, we get:

MapRate={2, 2, 4, 6} CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8} D_OFDMMod=96*Segments*2^Mode D_TimeInterIvT=if (TimeInterIv==0) then (0) else (96*Segments*204*2^TimeInterIv) endif D_TimeInterIv=if ((TimeInterIv==1) && (Mode==2)) then (D_TimeInterIvT*2) else (D_TimeInterIvT) endif D_Modulation= 96*2^Mode*MapRate[MappingMode+1]*2*Segments D_VB=8*TrunLen D_ByteInterIv=204*24*CodeRateFrac[CodeRate+1]*MapRate[MappingMode+1]/2*2^Mode*Segments D_Carrier=D_OFDMMod+D_TimeInterIv D_AfterVB=(D_Carrier*MapRate[MappingMode+1]+D_Modulation)*CodeRateFrac[CodeRate+1]+D_VB

D_Residual=D_AfterVB/8-204*int(D_AfterVB/8/204)

D_ByteAdjust=if (D_Residual==0) then (0) else (204-D_Residual) endif

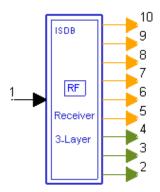
D_AfterDerandomize=D_AfterVB/8+D_ByteAdjust+D_ByteInterlv

D_AfterRSDecoder=D_AfterDerandomize*188/204

Delay Calculation of an ISDB-T Receiver

where

D_OFDMMod×108/96 is the delay between *Constellation* pins in DTV_ISDBThreeLaySource and DTV_ISDBThreeLayReceiver.


D_AfterDerandomize is the delay between pins *Bytes_AftRSC* in DTV_ISDBThreeLaySource and *Bytes_BefRSD* in DTV_ISDBThreeLayReceiver.

D_AfterRSDecoder is the delay between pins *Bytes_Uncoded* in DTV_ISDBThreeLaySource and *Bytes_Decoded* in DTV_ISDBThreeLayReceiver.

When connecting the receiver to the signal source in MER and BER measurements, the signal generator reference signal must be delayed according to the basic formula in <u>Delay Calculation of an ISDB-T Receiver</u>.

References

DTV_ISDBThreeLayReceiver_RF

Description: ISDB-T three-layer RF receiver **Library:** DTV, ISDB-T **Class:** TSDFDTV_ISDBThreeLayReceiver_RF

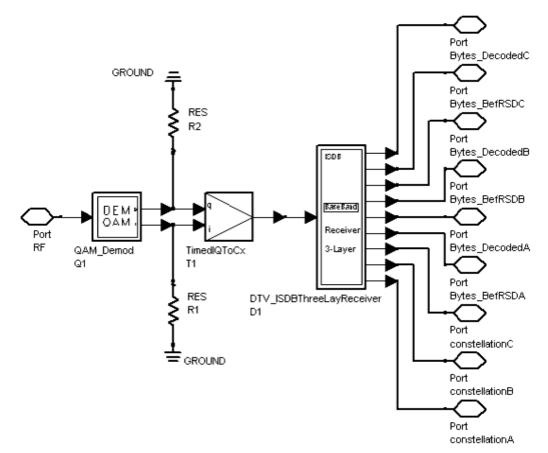
Parameters

Name	Description	Default	Unit	Туре	Range
RIn	input resistance	DefaultRIn	Ohm	real	(0,∞)
RTemp	physical temperature, in degrees C	DefaultRTemp	Celsius	real	[- 273.15, ∞)
GainImbalance	Gain imbalance, Q vs I	0.0	dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
FCarrier	carrier frequency	611.0MHz	Hz	real	(0,∞)
Sensitivity	voltage output sensitivity, Vout/Vin	1		real	(-∞, ∞)
Phase	reference phase in degrees	0.0	deg	real	(-∞, ∞)
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
CodeRateA	convolutional code rate for Layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum	
MappingModeA	signal constellations and mapping for Layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
TimeInterlvA	length of time interleaver for Layer A: A I_000, A I_001, A I_010, A I_011, A I_100	A I_000		enum	
TrunLenA	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5,∞)
SegmentsA	segments number of Layer A: A Seg 0 is not allowed, A Seg 1, A Seg 2, A Seg 3, A Seg 4, A Seg 5, A Seg 6, A Seg 7, A Seg 8, A Seg 9, A Seg 10, A Seg 11	A Seg 1		enum	
CodeRateB	convolutional code rate for Layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 1/2		enum	
MappingModeB	signal constellations and mapping for Layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B DQPSK		enum	
TimeInterlvB	length of time interleaver for Layer B: B I_000, B I_001, B I_010, B I_011, B I_100	B I_000		enum	
TrunLenB	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5,∞)
SegmentsB	segments number of Layer B: B Seg 0 is not allowed, B Seg 1, B Seg 2, B Seg 3, B Seg 4, B Seg 5, B Seg 6, B Seg 7, B Seg 8, B Seg 9, B Seg 10, B Seg 11	B Seg 4		enum	
CodeRateC	convolutional code rate for Layer C: C 1/2, C 2/3, C 3/4, C 5/6, C 7/8	C 1/2		enum	
MappingModeC	signal constellations and mapping for Layer C: C DQPSK, C QPSK, C QAM-16, C QAM-64	C QPSK		enum	
TimeInterlvC	length of time interleaver for Layer C: C I_000, C I_001, C I_010, C I_011, C I_100	C I_000		enum	
TrunLenC	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5,∞)
SegmentsC	segments number of Layer C: C Seg 0 is not allowed, C Seg 1, C Seg 2, C Seg 3, C Seg 4, C Seg 5, C Seg 6, C Seg 7, C Seg 8, C Seg 9, C Seg 10, C Seg 11	C Seg 8		enum	

Pin Inputs

Pin M	lame	Description	Signal	Туре

1 RF received OFDM signal to be demodulated timed

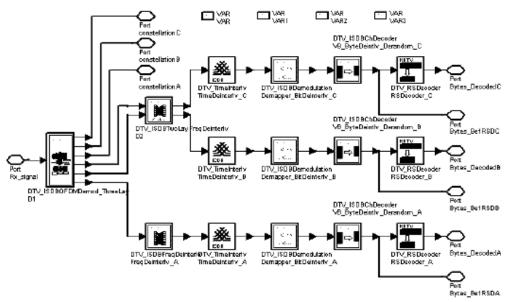

Pin Outputs

Pin	Name	Description	Signal Type
2	constellationA	constellation signal after OFDM demodulation of layer A	complex
3	constellationB	constellation signal after OFDM demodulation of layer B	complex
4	constellationC	constellation signal after OFDM demodulation of layer C	complex
5	Bytes_BefRSDA	decoded bytes after Viterbi decoder and de-randomizer of layer A	int
6	Bytes_DecodedA	decoded bytes after Reed Solomon decoder of layer A	int
7	Bytes_BefRSDB	decoded bytes after Viterbi decoder and de-randomizer of layer B	int
8	Bytes_DecodedB	decoded bytes after Reed Solomon decoder of layer B	int
9	Bytes_BefRSDC	decoded bytes after Viterbi decoder and de-randomizer of layer C	int
10	Bytes_DecodedC	decoded bytes after Reed Solomon decoder of layer C	int

Notes/Equations

1. This is a 3-layer ISDB-T RF receiver. The schematic for this subnetwork is shown below.

DTV_ISDBThreeLayReceiver_RF Schematic



2. The input timed signal is demodulated from RF to baseband and fed to the ISDB-T 3-

layer baseband receiver.

- 3. The input signal starts with the first symbol of an ISDB-T signal frame.
- 4. The baseband receiver schematic (DTV_ISDBThreeLayReceiver) is shown below.

DTV_ISDBThreeLayReceiver Schematic

5. Baseband Parameter Details

Mode specifies transmission mode 2K (Mode 1), 4K (Mode 2), or 8K (Mode 3) defined in ISDB-T.

OversamplingOption specifies the oversampling ratio of transmission signal. Ratios 1, 2, 4, 8, 16, and 32 are supported in this model. For example, if Ratio 2 is selected, FFT size of the demodulator will double; if Ratio 1 is selected no oversampling will be performed.

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction (1/32, 1/16, 1/8, or 1/4) of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.

CodeRateX (X represents A, B, or C) specifies the inner code rate 1/2, 2/3, 3/4, 5/6, or 7/8.

MappingModeX specifies signal constellation and mapping for DQPSK, QPSK, 16QAM, or 64QAM.

TimeInterlvX specifies the time domain interleaver type of the signal: I_{000} , I_{001} , I_{010} , I_{011} , or I_{100} .

SegmentsX specifies the number segments used for each layer. SegmentsA+SegmentsB+SegmentsC=13 is required. SegmentsB and SegmentsC cannot be 0. SegmentsA is permanently set to 1. Advanced Design System 2011.01 - DTV Design Library TrunLenX specifies the truncation length (1×8 bits, 2×8 bits), in bytes, in the Viterbi decoding algorithm.

6. Output Delays

DTV_ISDBChDecoder consists of Viterbi decoder, byte-wise deinterleaver and derandomizer. Viterbi decoder introduces different delay for different path memory truncation length (parameter TrunLen). For BER measurement synchronization, the delay between byte-interleaver and byte deinterleaver must be adjusted to a multiple of 12 bytes and the delay between randomizer and derandomizer must be adjusted to a multiple of 204 bytes. Here, both delays are adjusted to a multiple of 204bytes. The basic delay calculation of an ISDB-T receiver is shown in Delay Calculation of an ISDB-T Receiver; delays for layers A, B and, C are each calculated with their own hierarchical parameters. Assuming MapRate= $\{2, 2, 4, 6\}$, CodeRateFrac= $\{1/2, 2/3, 3/4, 5/6, 7/8\}$, then MapRate[MappingMode+1] represents the bit number mapped onto one data carrier, and CodeRateFrac[CodeRate+1] represents the inner coder rate, we get:

Delay Calculation of an ISDB-T Receiver

Var VAR

VAR1 MapRate={2, 2, 4, 6} CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8} D_OFDMMod=96*Segments*2^Mode D_TimeInterIvT=if (TimeInterIv==0) then (0) else (96*Segments*204*2^TimeInterIv) endif D_TimeInterIv=if ((TimeInterIv==1) && (Mode==2)) then (D_TimeInterIvT*2) else (D_TimeInterIvT) endif D_Modulation= 96*2^Mode*MapRate[MappingMode+1]*2*Segments D_VB=8*TrunLen D_ByteInterIv=204*24*CodeRateFrac[CodeRate+1]*MapRate[MappingMode+1]/2*2^Mode*Segments D_Carrier=D_OFDMMod+D_TimeInterIv D_AfterVB=(D_Carrier*MapRate[MappingMode+1]+D_Modulation)*CodeRateFrac[CodeRate+1]+D_VB D_Residual=D_AfterVB/8-204*int(D_AfterVB/8/204)

D_Residual=D_After vB/8-204^nft(D_After vB/8/204)
D_ByteAdjust=if (D_Residual==0) then (0) else (204-D_Residual) endif

D_ByteAdjust=If (D_Residual==0) then (0) else (204-D_Residual) end D_AfterDerandomize=D_AfterVB/8+D_ByteAdjust+D_ByteInterIv

D_AfterRSDecoder=D_AfterDerandomize*188/204

where

D_OFDMMod × 108/96 is the delay between *Constellation* pins in DTV_ISDBThreeLaySource and DTV_ISDBThreeLayReceiver.

D_AfterDerandomize is the delay between pin *Bytes_AftRSC* in DTV_ISDBThreeLaySource and *Bytes_BefRSD* in DTV_ISDBThreeLayReceiver.

D_AfterRSDecoder is the delay between pin *Bytes_Uncoded* in DTV_ISDBThreeLaySource and *Bytes_Decoded* in DTV_ISDBThreeLayReceiver.

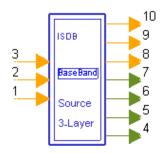
When connecting the receiver to the signal source in MER and BER measurements, the reference signal from the signal generator must be delayed according to the formula in <u>Delay Calculation of an ISDB-T Receiver</u>.

7. RF Parameter Details

GainImbalance and PhaseImbalance add certain impairments to the ideal output RF signal. Impairments are added as described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

$$V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin\left(\omega_{c}t + \frac{\phi\pi}{180}\right)\right)$$


where V_1 (t) is the in-phase RF envelope, V_2 (t) is the quadrature phase RF envelope,

g is the gain imbalance $g = 10^{\frac{GainImbalance}{20}}$ in the gain in the gain is the gain in the gain is the g

and, $\boldsymbol{\Phi}$ (in degrees) is the phase imbalance.

References

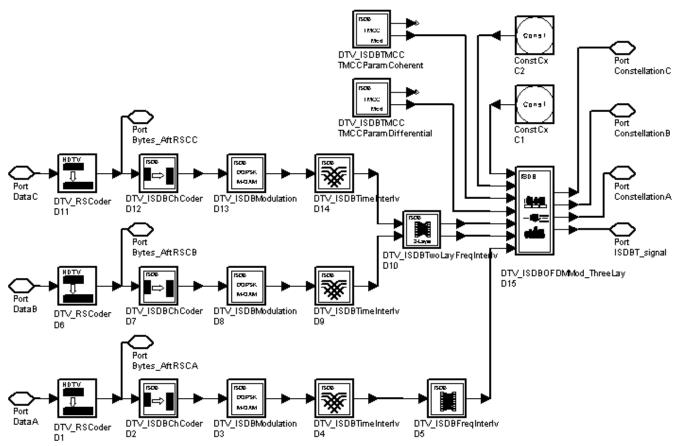
DTV_ISDBThreeLaySource

Description: ISDB-T three-layer signal source **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBThreeLaySource

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
CodeRateA	convolutional code rate for Layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum	
MappingModeA	signal constellations and mapping for Layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
TimeInterlvA	length of time interleaver for Layer A: A I_000, A I_001, A I_010, A I_011, A I_100	A I_000		enum	
SegmentsA	segments number of Layer A: A Seg 0 is not allowed, A Seg 1, A Seg 2, A Seg 3, A Seg 4, A Seg 5, A Seg 6, A Seg 7, A Seg 8, A Seg 9, A Seg 10, A Seg 11	A Seg 1		enum	
CodeRateB	convolutional code rate for Layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 1/2		enum	
MappingModeB	signal constellations and mapping for Layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B DQPSK		enum	
TimeInterlvB	length of time interleaver for Layer B: B I_000, B I_001, B I_010, B I_011, B I_100	B I_000		enum	
SegmentsB	segments number of Layer B: B Seg 0 is not allowed, B Seg 1, B Seg 2, B Seg 3, B Seg 4, B Seg 5, B Seg 6, B Seg 7, B Seg 8, B Seg 9, B Seg 10, B Seg 11	B Seg 4		enum	
CodeRateC	convolutional code rate for Layer C: C 1/2, C 2/3, C 3/4, C 5/6, C 7/8	C 1/2		enum	
MappingModeC	signal constellations and mapping for Layer C: C DQPSK, C QPSK, C QAM-16, C QAM-64	C QPSK		enum	
TimeInterlvC	length of time interleaver for Layer C: C I_000, C I_001, C I_010, C I_011, C I_100	C I_000		enum	
SegmentsC	segments number of Layer C: C Seg 0 is not allowed, C Seg 1, C Seg 2, C Seg 3, C Seg 4, C Seg 5, C Seg 6, C Seg 7, C Seg 8, C Seg 9, C Seg 10, C Seg 11	C Seg 8		enum	

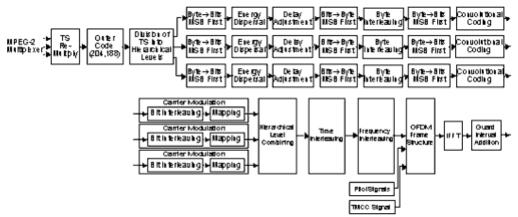
Pin Inputs


Pin	Name	Description	Signal Type			
1	DataA	input data of layer A	int			
2	DataB	input data of layer B	int			
3	DataC	input data of layer C	int			
Pin	Pin Outputs					

Pin	Name	Description	Signal Type
4	ISDBT_signal	ISDB-T three layer base-band signal	complex
5	constellationA	constellation signal of layer A before IFFT	complex
6	constellationB	constellation signal of layer B before IFFT	complex
7	constellationC	constellation signal of layer C before IFFT	complex
8	Bytes_AftRSCA	information bytes after RS encoder of layer A	int
9	Bytes_AftRSCB	information bytes after RS encoder of layer B	int
10	Bytes_AftRSCC	information bytes after RS encoder of layer C	int

Notes/Equations

1. This subnetwork model generates a 3-layer ISDB-T baseband signal. The schematic for this subnetwork is shown below.


DTV_ISDBThreeLaySource Schematic

2. The subnetwork input is a transport stream as defined in MPEG-2 Systems.

The signal format follows ISDB-T transmission specification. The figure below shows the ISDB-T baseband system functional block diagram.

ISDB-T Baseband System Functional Block Diagram

3. Auxiliary information AC1 and AC2 are set to 0 bit (same as CP).

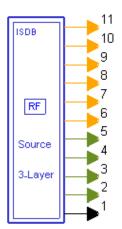
4. Parameter Details

GuardInterval value is 1/32, 1/16, 1/8 or 1/4 (the ratio of guard interval length to useful symbol length).

SegmentsA+SegmentsB+SegmentsC=13 is required.

SegmentsB and SegmentsC cannot be 0.

SegmentsA is permanently set to 1.


Time interleaving lengths, based on mode, are listed in the following table.

Time Interleaving Length

TimeInterlv	Time Interleaving Length I (Mode 1)	Time Interleaving Length I (Mode 2)	Time Interleaving Length I (Mode 3)
I_000	0	0	0
I_001	4	2	1
I_010	8	4	2
I_011	16	8	4
I_100	32	16	8

References

DTV_ISDBThreeLaySource_RF

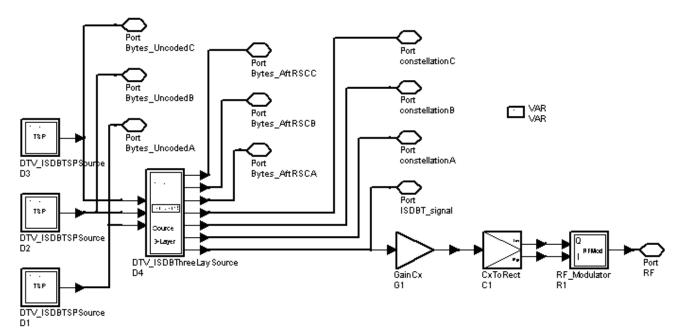
Description: ISDB-T three-layer RF signal source **Library:** DTV, ISDB-T **Class:** TSDFDTV_ISDBThreeLaySource_RF

Parameters

Advanced Design System 2011.01	- DTV Design Library
--------------------------------	----------------------

Name	Description	Default	Unit	Туре	Range
ROut	output resistance	DefaultROut	Ohm	real	(0,∞)
RTemp	physical temperature, in degrees C	DefaultRTemp	Celsius	real	[- 273.15, ∞)
FCarrier	carrier frequency	611.0MHz	Hz	real	(0,∞)
Power	modulator output power	40mW	W	real	(0,∞)
BasicSamplingRate	basic sampling rate	(2048/252.0)MHz	Hz	real	(0,∞)
MirrorSpectrum	Mirror spectrum about carrier?: NO, YES	NO		enum	
GainImbalance	Gain imbalance, Q vs I	0.0	dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
I_OriginOffset	I origin offset (percent)	0.0		real	(-∞, ∞)
Q_OriginOffset	Q origin offset (percent)	0.0		real	(-∞, ∞)
IQ_Rotation	IQ rotation	0.0	deg	real	(-∞, ∞)
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
CodeRateA	convolutional code rate for Layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum	
MappingModeA	signal constellations and mapping for Layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
TimeInterlvA	length of time interleaver for Layer A: A I_000, A I_001, A I_010, A I_011, A I_100	A I_000		enum	
SegmentsA	segments number of Layer A: A Seg 0 is not allowed, A Seg 1, A Seg 2, A Seg 3, A Seg 4, A Seg 5, A Seg 6, A Seg 7, A Seg 8, A Seg 9, A Seg 10, A Seg 11	A Seg 1		enum	
CodeRateB	convolutional code rate for Layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 1/2		enum	
MappingModeB	signal constellations and mapping for Layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B DQPSK		enum	
TimeInterlvB	length of time interleaver for Layer B: B I_000, B I_001, B I_010, B I_011, B I_100	B I_000		enum	
SegmentsB	segments number of Layer B: B Seg 0 is not allowed, B Seg 1, B Seg 2, B Seg 3, B Seg 4, B Seg 5, B Seg 6, B Seg 7, B Seg 8, B Seg 9, B Seg 10, B Seg 11	B Seg 4		enum	
CodeRateC	convolutional code rate for Layer C: C 1/2, C 2/3, C 3/4, C 5/6, C 7/8	C 1/2		enum	
MappingModeC	signal constellations and mapping for Layer C: C DQPSK, C QPSK, C QAM-16, C QAM-64	C QPSK		enum	
TimeInterlvC	length of time interleaver for Layer C: C I_000, C I_001, C I_010, C I_011, C I_100	C I_000		enum	
SegmentsC	segments number of Layer C: C Seg 0 is not allowed, C Seg 1, C Seg 2, C Seg 3, C Seg 4, C Seg 5, C Seg 6, C Seg 7, C Seg 8, C Seg 9, C Seg 10, C Seg 11	C Seg 8		enum	
DataType	payload data type: PN9, PN15, FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0, _32_1_32_0, _64_1_64_0	PN9		enum	

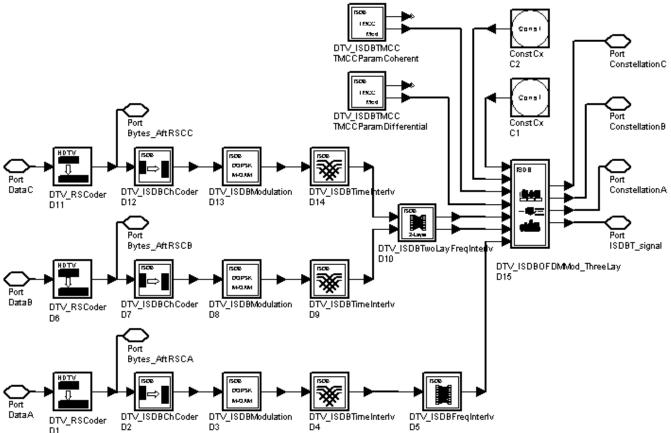
Advanced Design System 2011.01 - DTV Design Library


Pin	Name	Description	Signal Type
1	RF	RF signal	timed
2	ISDBT_signal	ISDB-T two-layer base-band signal	complex
3	constellationA	constellation signal of layer A before IFFT	complex
4	constellationB	constellation signal of layer B before IFFT	complex
5	constellationC	constellation signal of layer C before IFFT	complex
6	Bytes_AftRSCA	information bytes after RS encoder of layer A	int
7	Bytes_UncodedA	information bytes before RS encoder of layer A	int
8	Bytes_AftRSCB	information bytes after RS encoder of layer B	int
9	Bytes_UncodedB	information bytes before RS encoder of layer B	int
10	Bytes_AftRSCC	information bytes after RS encoder of layer C	int
11	Bytes_UncodedC	information bytes before RS encoder of layer C	int

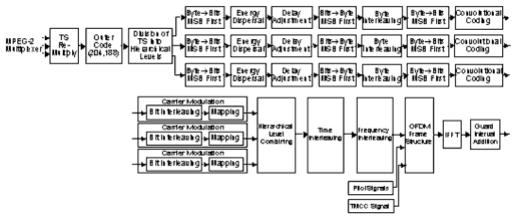
Notes/Equations

1. This subnetwork model generates a 3-layer ISDB-T RF signal source. The ISDB-T baseband signal is fed into the RF modulator. The RF signal is a timed signal after RF modulation.

The schematic for this subnetwork is shown below.



2. The format of 3-layer ISDB-T baseband signal source is based on ISDB-T specifications; the schematic for DTV_ISDBThreeLaySource is shown below.


DTV_ISDBThreeLaySource Schematic

Advanced Design System 2011.01 - DTV Design Library

The functional block diagram of the ISDB-T baseband system is shown below.

ISDB-T Baseband System Functional Block Diagram

3. Auxiliary information AC1 and AC2 are set to 0 bits (same as CP).

4. Parameter Details

- FCarrier defines the RF frequency for the ISDB signal.
- Power defines the power level for FCarrier.
- BasicSamplingRate specifies the basic sampling rate.
- MirrorSpectrum, when set to YES, is used to conjugate the input signal before any other processing is done.
- GainImbalance, PhaseImbalance, I_OriginOffset, Q_OriginOffset, and IQ_Rotation are used to add certain impairments to the ideal output RF signal. Impairments are added as described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

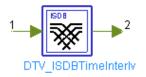
$$V_{3}(t) = A \left(V_{1}(t) \cos(\omega_{c}t) - gV_{2}(t) \sin\left(\omega_{c}t + \frac{\phi\pi}{180}\right) \right)$$

where A is a scaling factor that depends on the Power and ROut parameters specified by the user, V_1 (*t*) is the in-phase RF envelope, V_2

(*t*) is the quadrature phase RF envelope, *g* is the gain imbalance $\frac{GainImbalance}{2}$

and, Φ (in degrees) is the phase imbalance. Next, the signal V_3 (t) is rotated by IQ_Rotation degrees.

I_OriginOffset and Q_OriginOffset are then applied to the rotated signal. Note that the amounts specified are percentages with respect to the output rms voltage. The output rms voltage is given by sqrt(2×ROut×Power). Mode is used to select transmission mode of 1, 2, or 3 defined in ISDB-T.


- OversamplingOption specifies the oversampling ratio of transmission signal. Ratios 1, 2, 4, 8, 16, 32 are supported.
- *GuardInterval* specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction (1/32, 1/16, 1/8, or 1/4) of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.
- CodeRateX (X represents A, B, or C) is defined as code rate of stream. Code rates 1/2, 2/3, 3/4, 5/6 and 7/8 are available.
- *MappingModeX* specifies signal constellation and mapping: DQPSK, QPSK, 16QAM, or 64QAM.
- *TimeInterlvX* specifies the time domain interleaver type of the signal: I_000, I_001, I_010, I_011, or I_100. Time interleaving lengths are given in the following table.
- SegmentsX specifies the number of segments per layer. SegmentsA+SegmentsB+SegmentsC=13 is required. SegmentsB and SegmentsC cannot be 0. SegmentsA is permanently set to 1.

Time Interleaving Lengths

TimeInterlvX	Time Interleaving Length				
	Mode 1	Mode 2	Mode 3		
I_000	0	0	0		
I_001	4	2	1		
I_010	8	4	2		
I_011	16	8	4		
I_100	32	16	8		

Advanced Design System 2011.01 - DTV Design Library 1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_ISDBTimeInterlv

Description: ISDB-T intra-segment time interleaver **Library:** DTV, ISDB-T **Class:** SDFDTV ISDBTimeInterly

Parameters

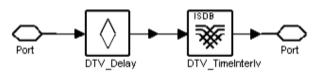
Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingMode	signal constellations and mapping: DQPSK, QPSK, QAM 16, QAM 64	DQPSK		enum	
Segments	number of segments per layer	13		int	[1, 13]
Ι	time interleaving length: I_000, I_001, I_010, I_011, I_100	I_000		enum	

Pin Inputs

Pir	n Name	Description	Signal Type			
1	In	input symbols to be interleaved	complex			
Din	Pin Outpute					

Pin Outputs

Pin	Name	Description	Signal Type
2	Out	output symbols after interleaved	complex


Notes/Equations

1. This subnetwork model interleaves modulated symbols in the time domain of an ISDB-T signal generator.

The schematic for this subnetwork is shown below.

DTV_ISDBTimeInterly Schematic

🔚 VAR

- 2. DTV_Delay delays the input complex carrier such that the total number of transmission and reception delays for each layer is a multiple of frames.
- 3. Relationships of the I parameter, the number of delay-adjustment symbols, and the number of delayed frames are given in the tables below.

Time Interleaving Parameter and Delay Adjustment Values

Mode 1

Subnetwork I Parameter Setting	TimeInterlv I Parameter Setting	Delay Adjustment Symbols	Delayed Frames in Tx and Rx
I_000	0	0	0
I_001	4	28	2
I_010	8	56	4
I_011	16	112	8
I_100	32	224	16

Mode 2

Subnetwork I Parameter Setting	TimeInterlv I Parameter Setting	Delay Adjustment Symbols	Delayed Frames in Tx and Rx
I_000	0	0	0
I_001	2	14	1
I_010	4	28	2
I_011	8	56	4
I_100	16	112	8

Mode 3

Subnetwork I Parameter Setting	TimeInterlv I Parameter Setting	Delay Adjustment Symbols	Delayed Frames in Tx and Rx
I_000	0	0	0
I_001	1	109	1
I_010	2	14	1
I_011	4	28	2
I_100	8	56	4

4. The subnetwork works on the basis of OFDM symbols, so the input of the subnetwork starts with the first data carrier of the corresponding hierarchical layer.

References

DTV_ISDBTMCC

Description: ISDB-T transmission and multiplexing configuration control signal **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBTMCC

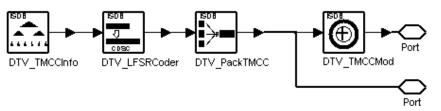
Parameters

Name	Description	Default	Unit	Туре	Range
InitiBit	initialization bit for the DBPSK modulation (1 bit)	0		int	{0, 1}
SynchWord	synchronization word (16 bits): W0, W1	W0		enum	
SegmentDescriptor	segment descriptor (3 bits): Differential, Coherent	Differential		enum	
SystemDescriptor	system description (2 bits): ISDB-T, ISDB-TSB, Reserved Des 2, Reserved Des 3	ISDB-T		enum	
CountDownIndex	index for transmission parameter change (4 bits): Ordinary, Frames 15, Frames 14, Frames 13, Frames 12, Frames 11, Frames 10, Frames 9, Frames 8, Frames 7, Frames 6, Frames 5, Frames 4, Frames 3, Frames 2, Frames 1	Ordinary		enum	
AlarmBroadcastStartFlag	start flag for emergency-alarm broadcasting (1 bit): No startup control, Startup control	No startup control		enum	
Cur_PartialReceptionFlag	current partial reception layer (1 bit): Cur Un-used, Cur Used	Cur Used		enum	
Cur_A_MappingMode	current signal constellations and mapping for Layer A (3 bits): Cur A DQPSK, Cur A QPSK, Cur A 16QAM, Cur A 64QAM, Cur A Reserved MappingMode 1, Cur A Reserved MappingMode 2, Cur A Reserved MappingMode 3, Cur A Un-used Layer MappingMode	Cur A DQPSK		enum	
Cur_A_CodeRate	current code rate for Layer A (3 bits): Cur A 1/2, Cur A 2/3, Cur A 3/4, Cur A 5/6, Cur A 7/8, Cur A Reserved CodeRate 1, Cur A Reserved CodeRate 2, Cur A Un- used Layer CodeRate	Cur A 1/2		enum	
Cur_A_TimeInterlv_I	current length of time interleaver for Layer A (3 bits): Cur A I 0 0 0, Cur A I 4 2 1, Cur A I 8 4 2, Cur A I	Cur A I 8 4 2		enum	

	Advanced Design System 2011.01 16 8 4, Cur A I 32 16 8, Cur A Reserved I 1, Cur A Reserved I 2, Cur A Un-used Layer I	- DTV Design Librar	y
Cur_A_Segments	current number of segments for Layer A (4 bits): Cur A Reserved Seg 1, Cur A Seg 1, Cur A Seg 2, Cur A Seg 3, Cur A Seg 4, Cur A Seg 5, Cur A Seg 6, Cur A Seg 7, Cur A Seg 8, Cur A Seg 9, Cur A Seg 10, Cur A Seg 11, Cur A Seg 12, Cur A Seg 13, Cur A Reserved Seg 2, Cur A Un-used Layer Seg	Cur A Seg 13	enum
Cur_B_MappingMode	current signal constellations and mapping for Layer B (3 bits): Cur B DQPSK, Cur B QPSK, Cur B 16QAM, Cur B 64QAM, Cur B Reserved MappingMode 1, Cur B Reserved MappingMode 2, Cur B Reserved MappingMode 3, Cur B Un-used Layer MappingMode	Cur B 16QAM	enum
Cur_B_CodeRate	current code rate for Layer B (3 bits): Cur B 1/2, Cur B 2/3, Cur B 3/4, Cur B 5/6, Cur B 7/8, Cur B Reserved CodeRate 1, Cur B Reserved CodeRate 2, Cur B Un- used Layer CodeRate	Cur B 1/2	enum
Cur_B_TimeInterlv_I	current length of time interleaver for Layer B (3 bits): Cur B I 0 0 0, Cur B I 4 2 1, Cur B I 8 4 2, Cur B I 16 8 4, Cur B I 32 16 8, Cur B Reserved I 1, Cur B Reserved I 2, Cur B Un-used Layer I	Cur B I 8 4 2	enum
Cur_B_Segments	current number of segments for Layer B (4 bits): Cur B Reserved Seg 1, Cur B Seg 1, Cur B Seg 2, Cur B Seg 3, Cur B Seg 4, Cur B Seg 5, Cur B Seg 6, Cur B Seg 7, Cur B Seg 8, Cur B Seg 9, Cur B Seg 10, Cur B Seg 11, Cur B Seg 12, Cur B Seg 13, Cur B Reserved Seg 2, Cur B Un-used Layer Seg	Cur B Reserved Seg 1	enum
Cur_C_MappingMode	current signal constellations and mapping for Layer C (3 bits): Cur C DQPSK, Cur C QPSK, Cur C 16QAM, Cur C 64QAM, Cur C Reserved MappingMode 1, Cur C Reserved MappingMode 2, Cur C Reserved MappingMode 3, Cur C Un-used Layer MappingMode	Cur C 64QAM	enum
Cur_C_CodeRate	current code rate for Layer C (3 bits): Cur C 1/2, Cur C 2/3, Cur C 3/4, Cur C 5/6, Cur C 7/8, Cur C Reserved CodeRate 1, Cur C Reserved CodeRate 2, Cur C Un- used Layer CodeRate	Cur C 1/2	enum
Cur_C_TimeInterlv_I	current length of time interleaver for Layer C (3 bits): Cur C I 0 0 0, Cur C I 4 2 1, Cur C I 8 4 2, Cur C I 16 8 4, Cur C I 32 16 8, Cur C Reserved I 1, Cur C Reserved I 2, 538	Cur C I 8 4 2	enum

	Advanced Design System 2011.01 Cur C Un-used Layer I	- DTV Design Lib	rary
Cur_C_Segments	current number of segments for Layer C (4 bits): Cur C Reserved Seg 1, Cur C Seg 1, Cur C Seg 2, Cur C Seg 3, Cur C Seg 4, Cur C Seg 5, Cur C Seg 6, Cur C Seg 7, Cur C Seg 8, Cur C Seg 9, Cur C Seg 10, Cur C Seg 11, Cur C Seg 12, Cur C Seg 13, Cur C Reserved Seg 2, Cur C Un-used Layer Seg	Cur C Seg 6	enum
Next_PartialReceptionFlag	Next partial reception layer (1 bit): Next Un-used, Next Used	Next Un- used	enum
Next_A_MappingMode	Next signal constellations and mapping for Layer A (3 bits): Next A DQPSK, Next A QPSK, Next A 16QAM, Next A 64QAM, Next A Reserved MappingMode 1, Next A Reserved MappingMode 2, Next A Reserved MappingMode 3, Next A Un-used Layer MappingMode	Next A QPSK	enum
Next_A_CodeRate	Next code rate for Layer A (3 bits): Next A 1/2, Next A 2/3, Next A 3/4, Next A 5/6, Next A 7/8, Next A Reserved CodeRate 1, Next A Reserved CodeRate 2, Next A Un- used Layer CodeRate	Next A 1/2	enum
Next_A_TimeInterlv_I	Next length of time interleaver for Layer A (3 bits): Next A I 0 0 0, Next A I 4 2 1, Next A I 8 4 2, Next A I 16 8 4, Next A I 32 16 8, Next A Reserved I 1, Next A Reserved I 2, Next A Un-used Layer I	Next A I 8 4 2	enum
Next_A_Segments	Next number of segments for Layer A (4 bits): Next A Reserved Seg 1, Next A Seg 1, Next A Seg 2, Next A Seg 3, Next A Seg 4, Next A Seg 5, Next A Seg 6, Next A Seg 7, Next A Seg 8, Next A Seg 9, Next A Seg 10, Next A Seg 11, Next A Seg 12, Next A Seg 13, Next A Reserved Seg 2, Next A Un-used Layer Seg	Next A Reserved Seg 1	enum
Next_B_MappingMode	Next signal constellations and mapping for Layer B (3 bits): Next B DQPSK, Next B QPSK, Next B 16QAM, Next B 64QAM, Next B Reserved MappingMode 1, Next B Reserved MappingMode 2, Next B Reserved MappingMode 3, Next B Un-used Layer MappingMode	Next B 16QAM	enum
Next_B_CodeRate	Next code rate for Layer B (3 bits): Next B 1/2, Next B 2/3, Next B 3/4, Next B 5/6, Next B 7/8, Next B Reserved CodeRate 1, Next B Reserved CodeRate 2, Next B Un- used Layer CodeRate	Next B 1/2	enum
Next_B_TimeInterlv_I	Next length of time interleaver for Layer B (3 bits): Next B I 0 0 0, Next B I 4 2 1, Next B I 8 4 2, Next B I 16 8 4, Next B I 32 16 8, Next B 539	Next B I 8 4 2	enum

1	Advanced Design System 2011.01	- DTV Design Libr	ary	
	Reserved I 1, Next B Reserved I 2, Next B Un-used Layer I			
Next_B_Segments	Next number of segments for Layer B (4 bits): Next B Reserved Seg 1, Next B Seg 1, Next B Seg 2, Next B Seg 3, Next B Seg 4, Next B Seg 5, Next B Seg 6, Next B Seg 7, Next B Seg 8, Next B Seg 9, Next B Seg 10, Next B Seg 11, Next B Seg 12, Next B Seg 13, Next B Reserved Seg 2, Next B Un-used Layer Seg	Next B Seg 6	enum	
Next_C_MappingMode	Next signal constellations and mapping for Layer C (3 bits): Next C DQPSK, Next C QPSK, Next C 16QAM, Next C 64QAM, Next C Reserved MappingMode 1, Next C Reserved MappingMode 2, Next C Reserved MappingMode 3, Next C Un-used Layer MappingMode	Next C QPSK	enum	
Next_C_CodeRate	Next code rate for Layer C (3 bits): Next C 1/2, Next C 2/3, Next C 3/4, Next C 5/6, Next C 7/8, Next C Reserved CodeRate 1, Next C Reserved CodeRate 2, Next C Un- used Layer CodeRate	Next C 1/2	enum	
Next_C_TimeInterlv_I	Next length of time interleaver for Layer C (3 bits): Next C I 0 0 0, Next C I 4 2 1, Next C I 8 4 2, Next C I 16 8 4, Next C I 32 16 8, Next C Reserved I 1, Next C Reserved I 2, Next C Un-used Layer I	Next C I 8 4 2	enum	
Next_C_Segments	Next number of segments for Layer C (4 bits): Next C Reserved Seg 1, Next C Seg 1, Next C Seg 2, Next C Seg 3, Next C Seg 4, Next C Seg 5, Next C Seg 6, Next C Seg 7, Next C Seg 8, Next C Seg 9, Next C Seg 10, Next C Seg 11, Next C Seg 12, Next C Seg 13, Next C Reserved Seg 2, Next C Un-used Layer Seg	Next C Seg 5	enum	
FutureUse	reserved for future use (all set to "1" 15 bits)	1 1	int array	"11111111111111111"


Pin Outputs

Pin	Name	Description	Signal Type
1	ТМСС	modulated TMCC signal	complex
2	TMCC_Bits	TMCC bits	int

Notes/Equations

- 1. This subnetwork model generates a TMCC signal. The TMCC signal provides information on how the receiver is to perform demodulation of information such as the hierarchical configuration and the OFDM-segment transmission parameters. The TMCC signal is transmitted by the TMCC carrier.
- 2. The schematic for this subnetwork is shown below.

DTV_ISDBTMCC Schematic

- 3. TMCC information assists the receiver in demodulating and decoding various information, including system identification, the transmission-parameter switching indicator, the broadcast emergency-alarm start flag, and *current* and *next* information. *Current* information represents the current hierarchical configuration and transmission parameters; *next* information includes the transmission parameters after switching. The *next* information can be specified or changed before the switching countdown.
- 4. Because TMCC information is used to specify transmission parameters and control receiver operation, it must be transmitted with greater reliability than program signals. Due to the difficulties involved with a receiver using the same concatenated-code decoding circuit for TMCC information and program signals (and because the use of block code is advantageous due to its shorter processing time) the shortened code (184,102) of the difference cyclic code (273,191) is used as the error-correction code for TMCC information.

Because the same TMCC signals are transmitted by multiple carriers it is possible to reduce the required C/N by simply adding these signals, thereby ensuring improved reception performance. These error-correction techniques and the addition process make it possible to receive TMCC signals at a lower C/N than for program signals.

- DTV_PackTMCC multiplexes the CDSC-coded TMCC information bits (184 bits) and other no-coded 20 bits, which include initialization bit, synchronization of TMCC and system type.
- 6. DTV_TMCCMod performs DBPSK modulation.

References

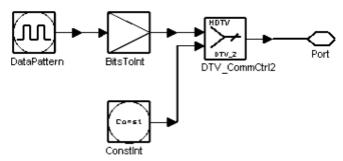
1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_ISDBTSPSource

Description: MPEG-2 format signal for ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBTSPSource

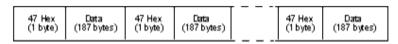
Parameters

Name	Description	Default	Unit Type	Range
DataPattern	data pattern: PN9, PN15, FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0, _32_1_32_0, _64_1_64_0	PN9	enum	


Pin Outputs

Pin	Name	Description	Signal Type
1	Out	MPEG-2 format transmission stream package	int

Notes/Equations

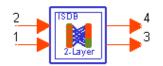

1. This subnetwork model generates a TSP for an ISDB-T signal generator. The schematic for this subnetwork is shown below.

DTV_ISDBTSPSource Schematic

2. The TSP signal format (shown in the figure below) is like MPEG-2, that is, one synchronization byte (47 Hex or 71 Dec) followed by 187 data bytes.

TSP Signal Format

3. DataPattern specifies the type of data filled in the *Data* domain shown in the figure above.


Advanced Design System 2011.01 - DTV Design Library

- If PN9 is selected, a 511-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.153.
- If PN15 is selected, a 32767-bit pseudo-random test pattern is generated according to CCITT Recommendation 0.151.
- If FIX4 is selected, a zero-stream is generated.
- If x_1_x_0 is selected, where x equals 4, 8, 16, 32, or 64, a periodic bit stream is generated, with the period being 2x. In one period, the first x bits are ones and the second x bits are zeros.

References

- 1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.
- 2. CCITT, Recommendation 0.151(10/92).
- 3. CCITT, Recommendation 0.153(10/92).

DTV_ISDBTwoLayFreqDeinterlv

Description: ISDB-T two-layer inter-frequency and intra-frequency deinterleaving **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBTwoLayFreqDeinterlv

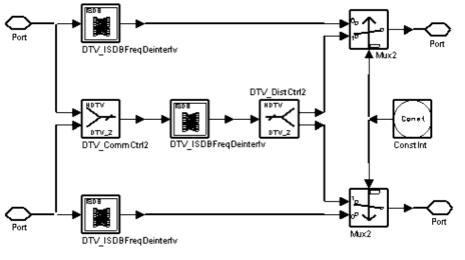
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingModeA	signal constellations and mapping of layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
SegmentsA	segment number of layer A	5		int	[1, 13]
MappingModeB	signal constellations and mapping of layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B QAM- 64		enum	
SegmentsB	segment number of layer B	8		int	[1, 13]

Pin Inputs

Pin	Name	Description	Signal Type
1	In1	input	anytype
2	In2	input	anytype
	<u> </u>		

Pin Outputs


Pin	Name	Description	Signal Type
3	Out1	output	anytype
4	Out2	output	anytype

Notes/Equations

 This subnetwork model performs carrier descrambling, carrier rotating, and intersegment deinterleaving; it is the reverse of the process for DTV_ISDBTwoLayFreqInterlv (dtv).
 The schematic for this subnetwork is shown below.

The schematic for this subnetwork is shown below.

DTV_ISDBTwoLayFreqDeinterlv Schematic

MAR VAR

2. Inter-segment deinterleaving must be conducted on two or more data segments when they belong to the same type of modulated portion, even if their hierarchical levels differ.

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_ISDBTwoLayFreqInterlv

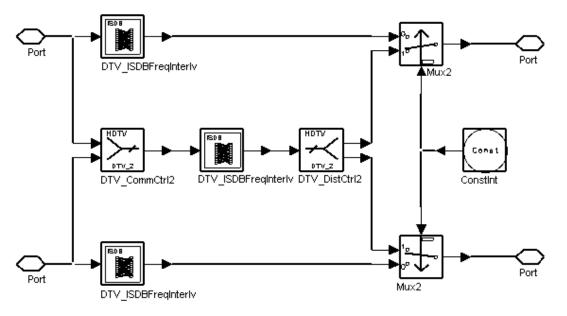
Description: ISDB-T two-layer inter-frequency and intra-frequency interleaving **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBTwoLayFreqInterlv

Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
MappingModeA	signal constellations and mapping of layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
SegmentsA	segment number of layer A	5		int	[1, 13]
MappingModeB	signal constellations and mapping of layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B QAM- 64		enum	
SegmentsB	segment number of layer B	8		int	[1, 13]

Pin Inputs

Pin Name		Description	Signal Type		
1	In1	input	anytype		
2	In2	input	anytype		

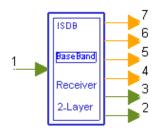

Pin Outputs

Pin Name		Description	Signal Type		
3	Out1	output	anytype		
4	Out2	output	anytype		

Notes/Equations

1. This subnetwork model performs frequency interleaving for ISDB-T 2-layer hierarchical transmission. The schematic for this subnetwork is shown below.

DTV_ISDBTwoLayFreqInterlv Schematic


🔚 VAR

- 2. Inter-segment interleaving must be conducted on two or more data segments when they belong to the same type of modulated portion, even if their hierarchical levels differ.
- 3. See also, DTV_ISDBTwoLayFreqDeinterlv (dtv)

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_ISDBTwoLayReceiver

Description: ISDB-T two-layer receiver **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBTwoLayReceiver

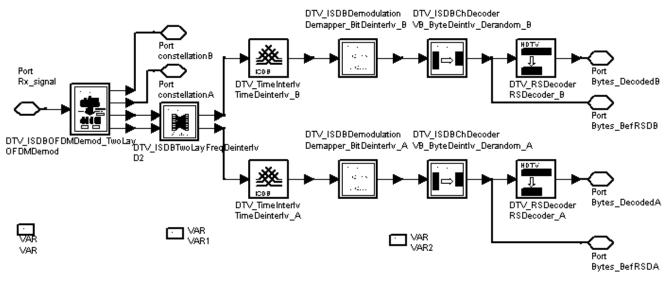
Parameters

Name	Description	Default	Unit	Туре	Range
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0:1]
CodeRateA	convolutional code rate for Layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum	
MappingModeA	signal constellations and mapping for Layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
TimeInterlvA	length of time interleaver for Layer A: A I_000, A I_001, A I_010, A I_011, A I_100	A I_000		enum	
TrunLenA	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5,∞)
SegmentsA	segments number of Layer A: A Seg 0 is not allowed, A Seg 1, A Seg 2, A Seg 3, A Seg 4, A Seg 5, A Seg 6, A Seg 7, A Seg 8, A Seg 9, A Seg 10, A Seg 11, A Seg 12	A Seg 5		enum	
CodeRateB	convolutional code rate for Layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 7/8		enum	
MappingModeB	signal constellations and mapping for Layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B QAM- 64		enum	
TimeInterlvB	length of time interleaver for Layer B: B I_000, B I_001, B I_010, B I_011, B I_100	B I_000		enum	
TrunLenB	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5,∞)
SegmentsB	segments number of Layer B: B Seg 0 is not allowed, B Seg 1, B Seg 2, B Seg 3, B Seg 4, B Seg 5, B Seg 6, B Seg 7, B Seg 8, B Seg 9, B Seg 10, B Seg 11, B Seg 12	B Seg 8		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	Rx_signal	received signal to be demodulated	complex

Pin Outputs


Advanced Design	System	2011.01 -	DTV	Design	Library
r la vancea Debign	System	2011.01	D I !	Design	Diorary

Pin	Name	Description	Signal Type
2	constellationA	constellation signal after OFDM demodulation of layer A	complex
3	constellationB	constellation signal after OFDM demodulation of layer B	complex
4	Bytes_BefRSDA	decoded bytes after Viterbi decoder and de-randomizer of layer A	int
5	Bytes_DecodedA	decoded bytes after Reed Solomon decoder of layer A	int
6	Bytes_BefRSDB	decoded bytes after Viterbi decoder and de-randomizer of layer B	int
7	Bytes_DecodedB	decoded bytes after Reed Solomon decoder of layer B	int

Notes/Equations

 This 2-layer ISDB-T baseband receiver subnetwork performs 2-layer OFDM demodulation, frequency deinterleaving, time deinterleaving, demapping and bit-wise deinterleaving, inner decoding (Viterbi), byte-wise deinterleaving, derandomizing and Reed-Solomon decoding.

The schematic for this subnetwork is shown in <u>DTV_ISDBTwoLayReceiver Schematic</u>.

DTV_ISDBTwoLayReceiver Schematic

- 2. The input signal starts with the first symbol of an ISDB-T signal frame.
- 3. Parameter Details

Mode specifies transmission mode 2K (Mode 1), 4K (Mode 2), or 8K (Mode 3) defined in ISDB-T.

OversamplingOption specifies the oversampling ratio of transmission signal. Ratios 1, 2, 4, 8, 16, and 32 are supported in this model. For example, if Ratio 2 is selected, FFT size of the demodulator will double; if Ratio 1 is selected no oversampling will be performed.

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction (1/32, 1/16, 1/8, or 1/4) of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.

CodeRateX (X represents A or B) specifies the inner code rate 1/2, 2/3,

3/4, 5/6, or 7/8.

MappingModeX specifies signal constellation and mapping for DQPSK, QPSK, 16QAM or 64QAM.

TimeInterlvX is time domain interleaver type of the signal: I_000, I_001, I_010, I_011, or I_100.

SegmentsX specifies the number of segments used for each layer. SegmentsA+SegmentsB=13 is required. SegmentsB cannot be 0.

TrunLenX is the truncation length (1×8 bits, 2×8 bits), in bytes, in the Viterbi decoding algorithm.

4. Output Delays

DTV_ISDBChDecoder consists of Viterbi decoder, byte-wise deinterleaver and derandomizer. Viterbi decoder introduces different delay for different path memory truncation length (TrunLen parameter). For BER measurement synchronization, the delay between byte interleaver and deinterleaver must be adjusted to a multiple of 12 bytes, and the delay between randomizer and derandomizer must be adjusted to a multiple of 204 bytes. Here, both delays are adjusted to a multiple of 204 bytes. The basic delay calculation of an ISDB-T receiver is shown in ISDB-T Receiver Delay Calculation; delays for layers A and B are each calculated with their own hierarchical parameters. Assuming MapRate= $\{2, 2, 4, 6\}$, CodeRateFrac= $\{1/2, 2/3, 3/4, 5/6, 7/8\}$, then MapRate[MappingMode+1] represents the bit number mapped onto one data carrier, and CodeRateFrac[CodeRate+1] represents the inner coder rate; we get:

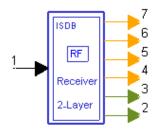
VAR1 MapRate={2, 2, 4, 6} CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8} D_OFDMMod=96*Segments*2^Mode D_TimeInterIvT=if (TimeInterIv==0) then (0) else (96*Segments*204*2^TimeInterIv) endif D_TimeInterIv=if ((TimeInterIv==1) && (Mode==2)) then (D_TimeInterIvT*2) else (D_TimeInterIvT) endif D_Modulation= 96*2^Mode*MapRate[MappingMode+1]*2*Segments D_VB=8*TrunLen D_ByteInterIv=204*24*CodeRateFrac[CodeRate+1]*MapRate[MappingMode+1]/2*2^Mode*Segments D_Carrier=D_OFDMMod+D_TimeInterIv D_AfterVB=(D_Carrier*MapRate[MappingMode+1]+D_Modulation)*CodeRateFrac[CodeRate+1]+D_VB D_Residual=D_AfterVB/8-204*int(D_AfterVB/8/204) D_ByteAdjust=if (D_Residual==0) then (0) else (204-D_Residual) endif D_AfterDerandomize=D_AfterVB/8+D_ByteAdjust+D_ByteInterIv D_AfterRSDecoder=D_AfterVB/8+D_BayteAdjust+D_ByteInterIv

ISDB-T Receiver Delay Calculation

where

D_OFDMMod \times 108/96 is the delay between the *Constellation* pins of DTV_ISDBTwoLaySource and DTV_ISDBTwoLayReceiver.

D_AfterDerandomize is the delay between pins *Bytes_AftRSC* in DTV_ISDBTwoLaySource and *Bytes_BefRSD* in DTV_ISDBTwoLayReceiver.


D_AfterRSDecoder is the delay between pins *Bytes_Uncoded* in DTV_ISDBTwoLaySource and *Bytes_Decoded* in DTV_ISDBTwoLayReceiver.

When connecting the receiver to the signal source in MER and BER measurements, the reference signal from the signal generator must be delayed according to the basic formula in <u>ISDB-T Receiver Delay Calculation</u>.

References

1. ARIB STD-B31 Version 1.5, Transmission System for Digital Terrestrial Television Broadcasting, July 29, 2003.

DTV_ISDBTwoLayReceiver_RF

Description: ISDB-T two-layer RF receiver **Library:** DTV, ISDB-T **Class:** TSDFDTV_ISDBTwoLayReceiver_RF

Parameters

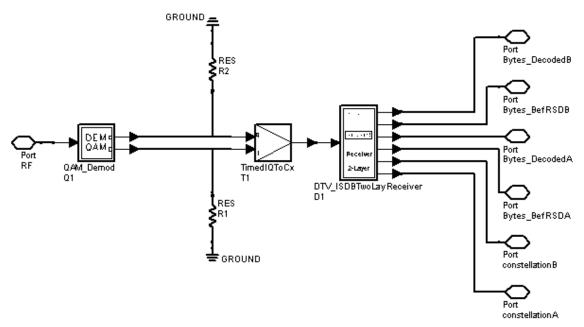
Advanced Design System 2	2011.01 - DTV Design Library
--------------------------	------------------------------

Name	Description	Default	Unit	Туре	Range
RIn	input resistance	DefaultRIn	Ohm	real	(0,∞)
RTemp	Temp physical temperature, in degrees C DefaultRTemp Celsius		Celsius	real	[- 273.15, ∞)
GainImbalance	Gain imbalance, Q vs I	0.0	dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
FCarrier	carrier frequency	611.0MHz	Hz	real	(0,∞)
Sensitivity	voltage output sensitivity, Vout/Vin	1		real	(-∞, ∞)
Phase	reference phase in degrees	0.0	deg	real	(-∞, ∞)
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
MappingModeA	pingModeA signal constellations and mapping for Layer A: A DQPSK DQPSK, A QPSK, A QAM-16, A QAM-64			enum	
CodeRateA	convolutional code rate for Layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum	
TimeInterlvA	length of time interleaver for Layer A: A I_000, A I_001, A I_010, A I_011, A I_100	A I_000		enum	
TrunLenA	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5,∞)
SegmentsA	segments number of Layer A: A Seg 0 is not allowed, A Seg 1, A Seg 2, A Seg 3, A Seg 4, A Seg 5, A Seg 6, A Seg 7, A Seg 8, A Seg 9, A Seg 10, A Seg 11, A Seg 12	A Seg 5		enum	
MappingModeB	signal constellations and mapping for Layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B QAM-64		enum	
CodeRateB	convolutional code rate for Layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 7/8		enum	
TimeInterlvB	length of time interleaver for Layer B: B I_000, B I_001, B I_010, B I_011, B I_100	B I_000		enum	
TrunLenB	path memory truncation length of Viterbi decoding algorithm, in bytes	10		int	[5,∞)
SegmentsB	segments number of Layer B: B Seg 0 is not allowed, B Seg 1, B Seg 2, B Seg 3, B Seg 4, B Seg 5, B Seg 6, B Seg 7, B Seg 8, B Seg 9, B Seg 10, B Seg 11, B Seg 12	B Seg 8		enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	RF	received OFDM signal to be demodulated	timed

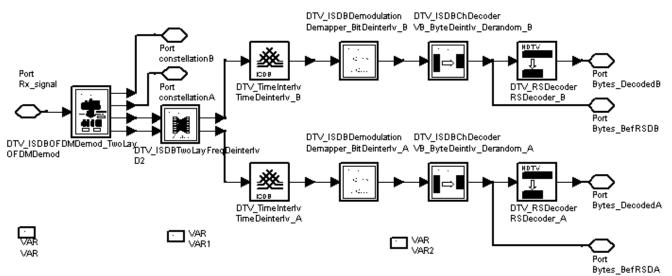
Pin Outputs


Advanced Design	System 2011.01 -	DTV Design Library

Pin	Name	Description	Signal Type
2	constellationA	constellation signal after OFDM demodulation of layer A	complex
3	constellationB	constellation signal after OFDM demodulation of layer B	complex
4	Bytes_BefRSDA	decoded bytes after Viterbi decoder and de-randomizer of layer A	int
5	Bytes_DecodedA	decoded bytes after Reed Solomon decoder of layer A	int
6	Bytes_BefRSDB	decoded bytes after Viterbi decoder and de-randomizer of layer B	int
7	Bytes_DecodedB	decoded bytes after Reed Solomon decoder of layer B	int

Notes/Equations

1. This subnetwork model is a 2-layer ISDB-T RF receiver. The schematic for this subnetwork is shown below.


DTV_ISDBTwoLayReceiver_RF Schematic

- 2. The input timed signal is demodulated from RF to baseband and fed to the ISDB-T 2layer baseband receiver.
- 3. The input signal starts with the first symbol of an ISDB-T signal frame.
- 4. The baseband receiver (DTV_ISDBTwoLayReceiver) schematic is shown below.

DTV_ISDBTwoLayReceiver Schematic

Advanced Design System 2011.01 - DTV Design Library

5. Baseband Parameter Details

Mode specifies transmission mode 2K (Mode 1), 4K (Mode 2), or 8K (Mode 3) defined in ISDB-T.

OversamplingOption specifies the oversampling ratio of transmission signal. Ratios 1, 2, 4, 8, 16, and 32 are supported in this model. For example, if Ratio 2 is selected, FFT size of the demodulator will double; if Ratio 1 is selected no oversampling will be performed.

GuardInterval specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction (1/32, 1/16, 1/8, or 1/4) of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.

CodeRateX (X represents A or B) specifies the inner code rate 1/2, 2/3, 3/4, 5/6, or 7/8.

MappingModeX specifies signal constellation and mapping for DQPSK, QPSK, 16QAM, or 64QAM.

TimeInterlvX specifies the time domain interleaver type of the signal: I_{000} , I_{001} , I_{010} , I_{011} , or I_{100} .

SegmentsX specifies the number of segments used for each layer. SegmentsA+SegmentsB=13 is required. SegmentsB cannot be 0.

TrunLenX specifies the truncation length (1×8 bits, 2×8 bits), in bytes, in the Viterbi decoding algorithm.

6. Output Delays

DTV_ISDBChDecoder consists of Viterbi decoder, byte-wise deinterleaver and derandomizer. Viterbi decoder introduces different delay for different path memory truncation length (parameter TrunLen). For BER measurement, delay synchronization between byte-interleaver and byte deinterleaver is adjusted to a multiple of 12 bytes and the delay between randomizer and derandomizer is adjusted to a multiple of 204 bytes. Here, both delays are adjusted to a multiple of 204 bytes.

The basic delay calculation of an ISDB-T receiver is shown in Delay Calculation of an

Advanced Design System 2011.01 - DTV Design Library

<u>ISDB-T Receiver</u>. Delays for layers A and B are each calculated with their own hierarchical parameters. Assuming MapRate={2, 2, 4, 6}, CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8}, then MapRate[MappingMode+1] represents the bit number mapped onto one data carrier, and CodeRateFrac[CodeRate+1] represents the inner coder rate, we get:

Delay Calculation of an ISDB-T Receiver

Var VAR Ban

VAR VAR1 MapRate={2, 2, 4, 6} CodeRateFrac={1/2, 2/3, 3/4, 5/6, 7/8} D_OFDMMod=96*Segments*2'Mode D_TimeInterlv=if (TimeInterlv==0) then (0) else (96*Segments*204*2^TimeInterlv) endif D_TimeInterlv=if (TimeInterlv==1) && (Mode==2)) then (D_TimeInterlvT*2) else (D_TimeInterlvT) endif D_Modulation= 96*2'Mode*MapRate[MappingMode+1]*2*Segments D_VB=8*TrunLen D_ByteInterlv=204*24*CodeRateFrac[CodeRate+1]*MapRate[MappingMode+1]/2*2'Mode*Segments D_Carrier=D_OFDMMod+D_TimeInterlv D_AfterVB=(D_Carrier*MapRate[MappingMode+1]+D_Modulation)*CodeRateFrac[CodeRate+1]+D_VB D_Residual=D_AfterVB/8-204*int(D_AfterVB/8/204) D_ByteAdjust=if (D_Residual==0) then (0) else (204-D_Residual) endif D_AfterDerandomize=D_AfterVB/8+D_ByteAdjust+D_ByteInterlv

D AfterRSDecoder=D AfterDerandomize*188/204

where

D_OFDMMod \times 108/96 is the delay between the Constellation pins in DTV_ISDBTwoLaySource DTV_ISDBTwoLayReceiver.

D_AfterDerandomize is the delay between *Bytes_AftRSC* in DTV_ISDBTwoLaySource and *Bytes_BefRSD* in DTV_ISDBTwoLayReceiver.

D_AfterRSDecoder is the delay between pin *Bytes_Uncoded* in DTV_ISDBTwoLaySource and *Bytes_Decoded* in DTV_ISDBTwoLayReceiver.

When connecting the receiver to the signal source in MER and BER measurements, the reference signal from the signal generator must be delayed according to the formula shown in <u>Delay Calculation of an ISDB-T Receiver</u>.

7. RF Parameter Details

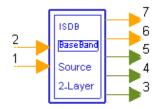
GainImbalance and PhaseImbalance add certain impairments to the ideal output RF signal. Impairments are added as described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

$$V_3(t) = A\left(V_1(t)\cos(\omega_c t) - gV_2(t)\sin\left(\omega_c t + \frac{\phi\pi}{180}\right)\right)$$

where V_1 (t) is the in-phase RF envelope, V_2 (t) is the quadrature phase RF envelope,

g is the gain imbalance


g = 10

and, Φ (in degrees) is the phase imbalance.

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_ISDBTwoLaySource

Description: ISDB-T two-layer signal source **Library:** DTV, ISDB-T **Class:** SDFDTV_ISDBTwoLaySource

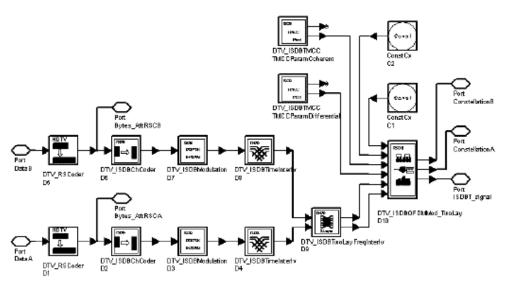
Parameters

Name	Description	Default	Unit	Туре	Rar	ıge
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum		
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum		
GuardInterval	uardInterval guard interval (fractional FFT size)			real	[0,	1]
CodeRateA	convolutional code rate for Layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum		
MappingModeA	signal constellations and mapping for Layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum		
TimeInterlvA	length of time interleaver for Layer A: A I_000, A I_001, A I_010, A I_011, A I_100	A I_000		enum		
SegmentsA	segments number of Layer A: A Seg 0 is not allowed, A Seg 1, A Seg 2, A Seg 3, A Seg 4, A Seg 5, A Seg 6, A Seg 7, A Seg 8, A Seg 9, A Seg 10, A Seg 11, A Seg 12	A Seg 5		enum		
CodeRateB	convolutional code rate for Layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 7/8		enum		
MappingModeB	signal constellations and mapping for Layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B QAM- 64		enum		
TimeInterlvB	length of time interleaver for Layer B: B I_000, B I_001, B I_010, B I_011, B I_100	B I_000		enum		
SegmentsB	segments number of Layer B: B Seg 0 is not allowed, B Seg 1, B Seg 2, B Seg 3, B Seg 4, B Seg 5, B Seg 6, B Seg 7, B Seg 8, B Seg 9, B Seg 10, B Seg 11, B Seg 12	B Seg 8		enum		

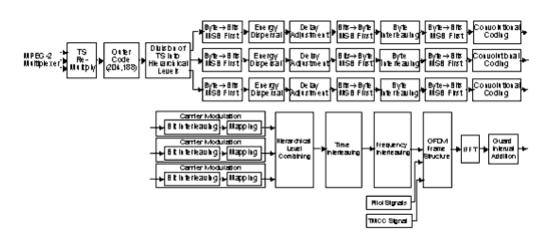
Pin Inputs

Pin	Name	Description	Signal Type
1	DataA	input data of layer A	int
2	DataB	input data of layer B	int

Pin Outputs


Advanced Design System 2011.01 - DTV Design Library

Pin	Name	Description	Signal Type
3	ISDBT_signal	ISDB-T two layer base-band signal	complex
4	constellationA	constellation signal of layer A before IFFT	complex
5	constellationB	constellation signal of layer B before IFFT	complex
6	Bytes_AftRSCA	information bytes after RS encoder of layer A	int
7	Bytes_AftRSCB	information bytes after RS encoder of layer B	int


Notes/Equations

1. This subnetwork model generates a 2-layer ISDB-T baseband signal. The schematic for this subnetwork is shown below.

DTV_ISDBTwoLaySource Schematic

2. Input to the subnetwork is a transport stream defined in MPEG-2 Systems. The signal format follows the ISDB-T transmission specification. The figure below shows functional block diagram of the ISDB-T baseband system.

ISDB-T Baseband System Functional Block Diagram

Advanced Design System 2011.01 - DTV Design Library

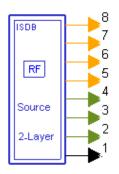
- 3. Auxiliary information AC1 and AC2 are set to bit 0 (same as CP).
- 4. Parameter Details

```
SegmentsA+SegmentsB=13 is required.
```

SegmentsB cannot be 0.

Time interleaving lengths, based on mode, are listed in the table below.

GuardInterval value is 1/32, 1/16, 1/8 or 1/4 (the ratio of guard interval length to useful symbol length).


Time Interleaving Length

TimeInterlv	Time Interleaving Length I (Mode 1)	Time Interleaving Length I (Mode 2)	Time Interleaving Length I (Mode 3)
I_000	0	0	0
I_001	4	2	1
I_010	8	4	2
I_011	16	8	4
I_100	32	16	8

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_ISDBTwoLaySource_RF

Description: ISDB-T two-layer RF signal source **Library:** DTV, ISDB-T **Class:** TSDFDTV_ISDBTwoLaySource_RF

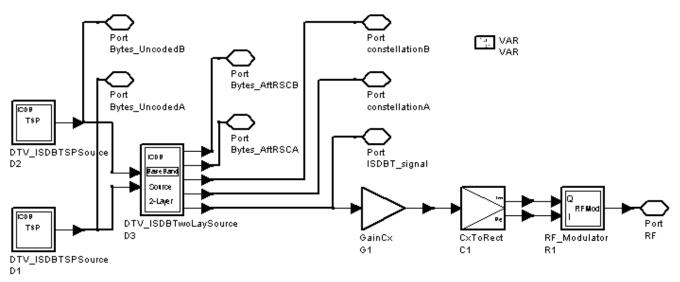
Parameters

Advanced Design System 2011.0	01 - DTV Design Library
-------------------------------	-------------------------

Name	Description	Default	Unit	Туре	Range
ROut	output resistance	DefaultROut	Ohm	real	(0,∞)
RTemp	Temp physical temperature, in degrees C DefaultRTemp		Celsius	real	[- 273.15, ∞)
FCarrier	carrier frequency	611.0MHz	Hz	real	(0,∞)
Power	modulator output power	40mW	W	real	(0,∞)
BasicSamplingRate	basic sampling rate	(2048/252.0)MHz	Hz	real	(0,∞)
MirrorSpectrum	Mirror spectrum about carrier?: NO, YES	NO		enum	
GainImbalance	nImbalance Gain imbalance, Q vs I 0.0 dB		dB	real	(-∞, ∞)
PhaseImbalance	Phase imbalance, Q vs I	0.0	deg	real	(-∞, ∞)
I_OriginOffset	I origin offset (percent)	0.0		real	(-∞, ∞)
Q_OriginOffset	Q origin offset (percent)	0.0		real	(-∞, ∞)
IQ_Rotation	IQ rotation	0.0	deg	real	(-∞, ∞)
Mode	transmission mode: Mode 1, Mode 2, Mode 3	Mode 1		enum	
OversamplingOption	oversampling ratio option: Ratio 1, Ratio 2, Ratio 4, Ratio 8, Ratio 16, Ratio 32	Ratio 1		enum	
GuardInterval	guard interval (fractional FFT size)	1/32		real	[0, 1]
CodeRateA	convolutional code rate for Layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum	
MappingModeA	signal constellations and mapping for Layer A: A DQPSK, A QPSK, A QAM-16, A QAM-64	A DQPSK		enum	
TimeInterlvA	length of time interleaver for Layer A: A I_000, A I_001, A I_010, A I_011, A I_100	A I_000		enum	
SegmentsA	segments number of Layer A: A Seg 0 is not allowed, A Seg 1, A Seg 2, A Seg 3, A Seg 4, A Seg 5, A Seg 6, A Seg 7, A Seg 8, A Seg 9, A Seg 10, A Seg 11, A Seg 12	A Seg 5		enum	
CodeRateB	convolutional code rate for Layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 7/8		enum	
MappingModeB	signal constellations and mapping for Layer B: B DQPSK, B QPSK, B QAM-16, B QAM-64	B QAM-64		enum	
TimeInterlvB	length of time interleaver for Layer B: B I_000, B I_001, B I_010, B I_011, B I_100	B I_000		enum	
SegmentsB	segments number of Layer B: B Seg 0 is not allowed, B Seg 1, B Seg 2, B Seg 3, B Seg 4, B Seg 5, B Seg 6, B Seg 7, B Seg 8, B Seg 9, B Seg 10, B Seg 11, B Seg 12	B Seg 8		enum	
DataType	payload data type: PN9, PN15, FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0, _32_1_32_0, _64_1_64_0	PN9		enum	

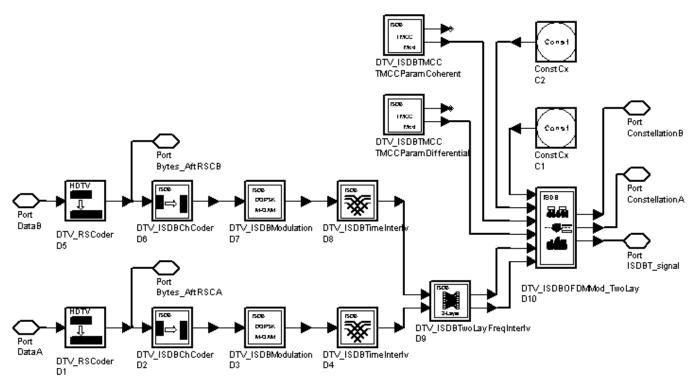
Pin Outputs

Advanced Design System 2011.01 - DTV Design Library

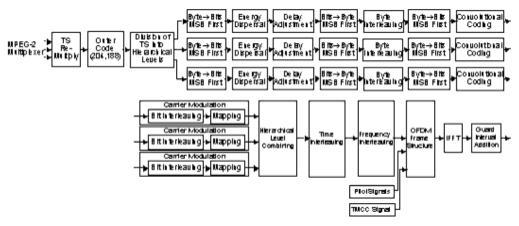

Pin	Name	Description	Signal Type
1	RF	RF signal	timed
2	ISDBT_signal	ISDB-T two-layer base-band signal	complex
3	constellationA	constellation signal of layer A before IFFT	complex
4	constellationB	constellation signal of layer B before IFFT	complex
5	Bytes_AftRSCA	information bytes after RS encoder of layer A	int
6	Bytes_UncodedA	information bytes before RS encoder of layer A	int
7	Bytes_AftRSCB	information bytes after RS encoder of layer B	int
8	Bytes_UncodedB	information bytes before RS encoder of layer B	int

Notes/Equations

1. This subnetwork model generates a 2-layer ISDB-T RF source signal. The baseband signal of ISDB-T is fed into the RF modulator. RF signal is timed signal after RF modulation.


The schematic for this subnetwork is shown below.

DTV_ISDBTwoLaySource_RF Schematic


2. The 2-layer ISDB-T baseband signal source format is based on ISDB-T specifications. The schematic for DTV_ISDBTwoLaySource is shown below.

DTV_ISDBTwoLaySource Schematic

3. The ISDB-T baseband system functional block diagram is shown below.

4. Herein auxiliary information AC1 and AC2 are set to 0 bits (same as CP).

5. Parameter Details

- FCarrier defines the RF frequency for the ISDB signal.
- Power defines the power level for FCarrier.
- BasicSamplingRate specifies the basic sampling rate.
- The *MirrorSpectrum* is used to conjugate the input signal (when set to YES) before any other processing is done.
- The GainImbalance, PhaseImbalance, I_OriginOffset, Q_OriginOffset, and IQ_Rotation parameters are used to add certain impairments to the ideal output RF signal. Impairments are added as described here.

The unimpaired RF I and Q envelope voltages have gain and phase imbalance applied. The RF is given by:

Advanced Design System 2011.01 - DTV Design Library

$$V_{3}(t) = A\left(V_{1}(t)\cos(\omega_{c}t) - gV_{2}(t)\sin(\omega_{c}t + \frac{\phi\pi}{180})\right)$$

where A is a scaling factor that depends on the Power and ROut parameters specified by the user, V_1 (t) is the in-phase RF envelope, V_2

(*t*) is the quadrature phase RF envelope, *g* is the gain imbalance $\frac{GainImbalance}{20}$

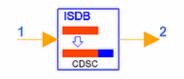
g = 10

and, Φ (in degrees) is the phase imbalance. Next, the signal V_3 (*t*) is rotated by IQ_Rotation degrees.

I_OriginOffset and Q_OriginOffset are then applied to the rotated signal. Note that the amounts specified are percentages with respect to the output rms voltage. The output rms voltage is given by sqrt(2×ROut×Power). Mode is used to select transmission mode of 1, 2, or 3 defined in ISDB-T.

- *OversamplingOption* specifies the oversampling ratio of transmission signal. Oversampling ratios 1, 2, 4, 8, 16, 32 are supported in this source.
- *GuardInterval* specifies the guard interval (also called cyclic extension) length for each symbol, as a fraction (1/32, 1/16, 1/8, or 1/4) of the FFT time period. The value must match the guard interval length actually used in the input signal in order for the demodulation to work properly.
- *CodeRateX* (where *X* represents *A* or *B*) specifies the inner code rate 1/2, 2/3, 3/4, 5/6, or 7/8.
- *MappingModeX* specifies signal constellation and mapping for DQPSK, QPSK, 16QAM, or 64QAM.
- Time interleaving lengths are given in in the table below.

TimeInterlv	Time Interleaving Length						
	Mode 1 Mode 2		Mode 3				
I_000	0	0	0				
I_001	4	2	1				
I_010	8	4	2				
I_011	16	8	4				
I_100	32	16	8				


Time Interleaving Lengths

• *SegmentsX* specifies the number of segments. SegmentsA+SegmentsB=13 is required. SegmentsB cannot be 0.

References

1. ARIB STD-B31 Version 1.5, *Transmission System for Digital Terrestrial Television Broadcasting*, July 29, 2003.

DTV_LFSRCoder

Description: LFSR cyclic coder **Library:** DTV, ISDB-T **Class:** SDFDTV_LFSRCoder

Parameters

Name	Description	Default	Unit	Туре	Range
Code	length of code bits	184		int	(0,∞)
Info	length of information bits	102		int	(0,∞)
	generation polynomial's suffix $(X^{P[0]} + X^{P[1]} + X^{P[m]})$	0 4 10 18 22 24 34 36 40 48 52 56 66 67 71 76 77 82		int array	[0, ∞)

Pin Inputs

Pin	Name	Description	Signal Type					
1	input	signal to be encoded	int					
Pin Outputc								

Pin Outputs

Pin	Name	Description	Signal Type
2	output	error protected signal	int

Notes/Equations

- 1. This model performs cyclic coding over the input signal.
- 2. Cyclic codes are linear block codes with an important additional property: *a cyclic, or end-around, shift of any codeword is also a codeword*. Algebraically, the codewords constitute a group under the cyclic shift operation.

If $C = (c_0, c_1, \dots, c_{n-1})$ denotes a codeword with elements in GF(q), we associate

with it a polynomial over GF(q) of degree at most n-1:

 $c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$

Note the coefficients of the polynomial are in GF(q). Now consider a one-position right cyclic shift of C, producing

$$C^{(1)} = (c_{n-1}, c_0, \dots, c_{n-2})$$

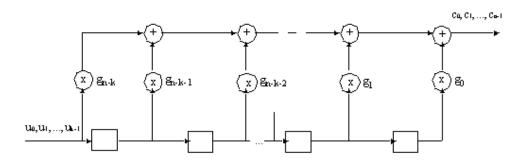
The associated polynomial would be

 $c^{(1)}(x) = c_{n-1} + c_0 x + c_1 x^2 + \dots + c_{n-2} x^{n-1}$

which is another polynomial of degree at most *n*-1. Polynomials c(x) and $c^{(1)}(x)$ are related by $c^{(1)}(x) = xc(x)mod(x^n - 1)$ Now suppose that we are given a particular cyclic (n,k) code over GF(q). We define the generator polynomial g(x) of the cyclic code as the mnemonic polynomial of minimum degree among the set of nonzero codeword polynomials. We assume that the degree of this polynomial is $r \le n-1$ and write

 $g(x) = g_0 + g_1 x + g_2 x^2 + \dots + g_{n-1} x^{n-1}$

where again the coefficients are members of GF(q). Two fundamental properties of cyclic codes are:


Property 1. c(x) is a code polynomial if c(x)=u(x)g(x), where u(x) is of degree n-1-r or less.

Property 2. g(x) generates an (n,k) cyclic code if g(x) is of degree n-k and is a factor of x^n -1.

Property 1 of cyclic codes suggests one implementation of an encoder: performing the computation of c(x)=u(x)g(x). Such an encoding system is shown in Non-Systematic Encoder for Cyclic Code and is nothing more than a digital transversal filter over GF(q) that convolves the information sequence u_{k-1}, \ldots, u_0 with the

impulse response $g_{n-k}, g_{n-k-1}, \dots, g_0$.

Non-Systematic Encoder for Cyclic Code

References

- 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 2. W. Xinmei and X. Guozhen, *Error Correcting Codes: Theory and Application*, Xidian University Press, P.R.China, 1991.

DTV_LoadIFFTBuff

Description: Layer data stream loader into IFFT buffer with transmission spectrum adjustment for ISDB-T **Library:** DTV, ISDB-T **Class:** SDFDTV_LoadIFFTBuff

Parameters

Name	Description	Default	Unit	Туре	Range	
Carriers	number of carriers in one segment	432		int	108 for mode 1; 216 for mode 2; 432 for mode 3	
Segments	number of segments	13		int	[1, 13]	
InSequence	segment sequence at input	0 1 2 3 4 5 6 7 8 9 10 11 12		int array	"0,1, ,Segments-1" †	
OutSequence	segment sequence at output	11 9 7 5 3 1 0 2 4 6 8 10 12		int array	",1,0,2," ++	
Order	IFFT points=2^Order	13		int	[1, ∞) ⁺⁺⁺	

⁺ The InSequence value is [0, Segments-1]. According to ISDB-T, InSequence is "0, 1, 2, ..., Segments-1" after Segments is determined.

⁺⁺ The OutSequence value is [0, Segments-1]. According to ISDB-T, OutSequence is "...,1,0,2,..." after Segments is determined. For example, if Segments=5, OutSequence is "3,1,0,2,4"; if Segments=10, OutSequence is "9,7,5,3,1,0,2,4,6,8".

⁺⁺⁺ Order is the order of FFT. It must satisfy $2^{Order} \ge Carriers * Segments$

Pin Inputs

Pin	Name	Description	Signal Type
1	input	received segments signal	complex
	<u> </u>		

Pin Outputs

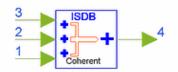
Pin	Name	Description	Signal Type
2	output	IFFT input signal with spectrum change and zero padded	complex

Notes/Equations

- 1. This model loads the adjusted data segments into the IFFT buffer with transmission spectrum adjustment for ISDB-T.
- The input data segment order is adjusted in order to change its transmission spectrum. The input segment is changed into the output segment; the changed segments are placed in the IFFT buffer by zero padded in the center of the buffer.

Advanced Design System 2011.01 - DTV Design Library

Assume $x(0), x(1), \dots, x(N-1)$ are the signal of the changed segments, where $N = Length \times Segments + 1$ $M = 2^{FFTStage}$


 $y(0), y(1), \dots, y(M-1)$ are the outputs of the model. Data loading is performed as follows:

$$y(i) = x \left(\frac{N}{2} + i\right) \qquad i = 0, ..., \frac{N+1}{2} - 1$$
$$y(i) = 0 \qquad i = \frac{N+1}{2}, ..., M - \frac{N}{2} - 1$$
$$y(i) = x \left(i - M + \frac{N}{2}\right) \qquad i = M - \frac{N}{2}, ..., M$$

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept. 1998.

DTV_MuxCohSegs

Description: ISDB-T multiplex coherent segments **Library:** DTV, ISDB-T **Class:** SDFDTV_MuxCohSeqs

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one segment	432		int	108 for mode 1; 216 for mode 2; 432 for mode 3
Segments	number of segments	1		int	[1, 13]
Start_Seg	initial number of segment (0 to Segments-1)	0		int	[0, 12]
SPnumber	number of scattered pilots in each segment	36		int	[0, ∞) †
SPperiod	distance in carriers between nearby scattered pilots	12		int	(0,∞) ††
SPstart	start position of scattered pilots in carriers	0		int	[0, ∞) ⁺⁺
SPoffset	offset value of SPstart in each symbol	3		int	[0, ∞) ⁺⁺
SPphase	initial phase of scattered pilots	0		int	[0, SPperiod/SPoffset-1]

⁺ SPnumber=9 for mode 1, 18 for mode 2, 36 for mode 3, per segment in ISDB-T systems.

⁺⁺ SPperiod=12, SPstart=0, SPoffset=3 in ISDB-T systems.

Pin Inputs

Pin	Name	Description	Signal Type		
1	data	TSP data iuput	complex		
2	TMCC	TMCC data input	complex		
3	AC	AC data input	complex		

Pin Outputs

Pin	Name	Description	Signal Type
4	output	coherent segments data	complex

Notes/Equations

 This model multiplexes TSP (transport stream packet) data, TMCC (transmission and multiplexing configuration control) data, and AC (auxiliary channel) data into the coherent modulation OFDM segments (such as QPSK, 16-QAM, and 64-QAM modulation) according to <u>Structure of OFDM Segment for Coherent Modulation</u> and <u>Carrier Allocation of AC and TMCC for Coherent Modulation</u>. 2. IntState of Carriers determines the number of TMCC and AC in each segment. Then, IntState of Start_Seg and Segments determines the TMCC and AC positions in each corresponding segment according to <u>Carrier Allocation of AC and TMCC for Coherent</u> <u>Modulation</u>.

The PRBS sequences in each segment are generated according to <u>Generation of PRBS</u> <u>Sequence</u> and the initial sets of PRBS register in <u>Initial Sets of PRBS Register</u>. The PRBS in initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on every used carriers in each segment (whether or not it is a pilot).

Positions of corresponding scattered pilots are generated as follows. For symbol of index I (ranging from 0 to 203), carriers for which index k belongs to subset $\{k = 3 \times l \mod 4 + 12p | p \text{ integer}, p \ge 0, k \in [0, Length \times Segments]\}$

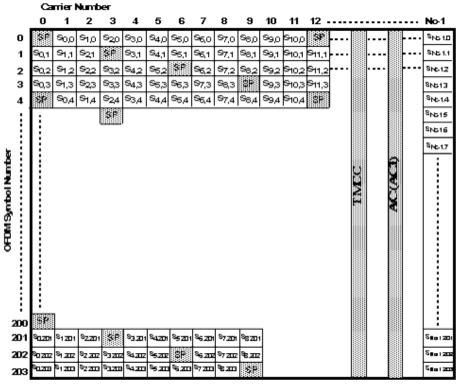
are scattered pilots positions. Scattered pilots positions are controlled by

SPnumber, which determines the number of scattered pilots in each segment, is: 9 in mode 1 (Length=108), 18 in mode 2 (Length=216), or 36 in mode 3 (Length=432).

SPperiod=12, SPstart=0, SPoffset=3 in all three modes according to ISDB-T.

After determining TMCC, AC, and SP positions in each corresponding segment and the value of the PRBS sequence in all active carriers in each segment, TMCC, AC, and TSP data are multiplexed into the coherent segments. According to the TMCC position and the PRBS sequence, one TMCC bit is output in every TMCC position. $x[TMCCposition[l]] = PilotValue[TMCCposition[l]] \times TMCC$

where *NTMCC* is the number of TMCCs in one segment; *PilotValue* is the PRBS sequence in the corresponding segment; x[i] is segment data.

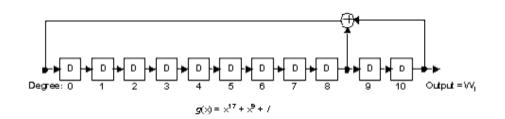

AC data is:

 $x[ACposition[i]] = PilotValue[ACposition[i]] \times AC[i]$

Except for AC, TMCC, and SP positions, the remaining positions in one segment are TSP data positions.

x[i] = data[i]

Structure of OFDM Segment for Coherent Modulation


 $S_{jj,k}$ denotes complex data in the data segment attentime and frequency interleaving. No=106 for Mode1; 216 for Mode2, 432 for Mode3

Carrier Allocation of AC and TMCC for Coherent Modulation

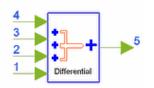
Advanced Design	System	2011.01 -	- DTV	Design Library
That ano congin	Sjotem	2011.01		Design Biorary

				7101		Desig	in by:		011.0			sign I	
Segment	11	9	7	5	3	1	0	2	4	6	8	10	12
Mode 1													
AC1_1	10	53	61	11	20	74	35	76	4	40	8	7	98
AC1_2	28	83	100	101	40	100	79	97	89	89	64	89	101
TMCC_1	70	25	17	86	44	47	49	31	83	61	85	101	23
Mode 2													
AC1_1	10	61	20	35	4	8	98	53	11	74	76	40	7
AC1_2	28	100	40	79	89	64	101	83	101	100	97	89	89
AC1_3	161	119	182	184	148	115	118	169	128	143	112	116	206
AC1_4	191	209	208	205	197	197	136	208	148	187	197	172	209
TMCC_1	70	17	44	49	83	85	23	25	86	47	31	61	101
TMCC_2	133	194	155	139	169	209	178	125	152	157	191	193	131
Mode 3													
AC1_1	10	20	4	98	11	76	7	61	35	8	53	74	40
AC1_2	28	40	89	101	101	97	89	100	79	64	83	100	89
AC1_3	161	182	148	118	128	112	206	119	184	115	169	143	116
AC1_4	191	208	197	136	148	197	209	209	205	197	208	187	172
AC1_5	277	251	224	269	290	256	226	236	220	314	227	292	223
AC1_6	316	295	280	299	316	305	244	256	305	317	317	313	305
AC1_7	335	400	331	385	359	332	377	398	364	334	344	328	422
AC1_8	425	421	413	424	403	388	407	424	413	352	364	413	425
TMCC_1	70	44	83	23	86	31	101	17	49	85	25	47	61
TMCC_2	131	155	169	178	152	191	131	194	139	209	125	157	193
TMCC_3	233	265	301	241	263	277	286	260	299	239	302	247	317
TMCC_4	410	355	425	341	373	409	349	371	385	394	368	407	347

Generation of PRBS Sequence

Initial Sets of PRBS Register

Advanced Design System 2011.01 - DTV Design Library


Segment Number	Initial Sets for Mode 1 †	Initial Sets for Mode 2 †	Initial Sets for Mode 3 †
11	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	11111111111
9	1 1 0 1 1 0 0 1 1 1 1	0 1 1 0 1 0 1 1 1 1 0	1 1 0 1 1 1 0 0 1 0 1
7	0 1 1 0 1 0 1 1 1 1 0	1 1 0 1 1 1 0 0 1 0 1	10010100000
5	01000101110	1 1 0 0 1 0 0 0 0 1 0	01110001001
3	1 1 0 1 1 1 0 0 1 0 1	10010100000	00100011001
1	00101111010	00001011000	1 1 1 0 0 1 1 0 1 1 0
0	1 1 0 0 1 0 0 0 0 1 0	01110001001	00100001011
2	00010000100	00000100100	1 1 1 0 0 1 1 1 1 0 1
4	10010100000	00100011001	01101010011
6	1 1 1 1 0 1 1 0 0 0 0	01100111001	10111010010
8	00001011000	1 1 1 0 0 1 1 0 1 1 0	01100010010
10	10100100111	00101010001	1 1 1 1 0 1 0 0 1 0 1
12	01110001001	0010001011	00010011100

⁺ Degree from 0 to 10 in <u>Generation of PRBS Sequence</u>.

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_MuxDiffSegs

Description: ISDB-T multiplex differential segments **Library:** DTV, ISDB-T **Class:** SDFDTV_MuxDiffSegs

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one segment	432		int	108 for mode 1; 216 for mode 2; 432 for mode 3
Segments	number of segments	1		int	[1, 13]
Start_Seg	initial number of segment (0 to Segments-1)	0		int	[0, 12]

Pin Inputs

Pin	Name	Description	Signal Type
1	data	TSP data input	complex
2	ТМСС	TMCC data input	complex
3	AC1	AC1 data input	complex
4	AC2	AC2 data input	complex
	<u> </u>		

Pin Outputs

Pin	Name	Description	Signal Type
5	output	differential segments data output	complex

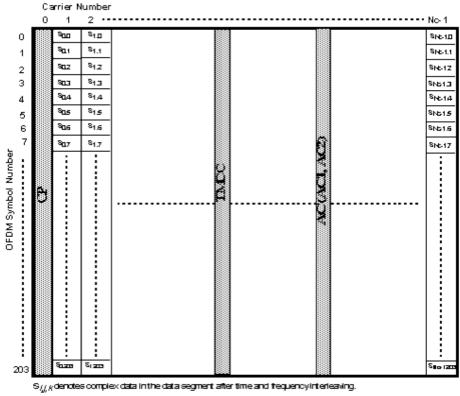
Notes/Equations

- This model multiplexes TSP (transport stream packet), TMCC (transmission and multiplexing configuration control), AC1 (auxiliary channel 1), and AC2 (auxiliary channel 2) data into the differential modulation OFDM segments according to <u>Structure of OFDM Segment for Differential Modulation</u> and <u>Carrier Allocation of CP</u>, AC, and TMCC for Differential Modulation.
- 2. IntState of Length determines the number of TMCC, AC1, and AC2 in each segment. IntState of Start_Seg and Segments determine the TMCC, AC1, and AC2 positions in each corresponding segment according to <u>Carrier Allocation of CP, AC, and TMCC for</u> Differential Modulation.

The PRBS sequences in each segment are generated according to <u>Generation of PRBS</u> <u>Sequence</u> and the initial sets of PRBS register in <u>Initial Sets of PRBS Register</u>. The PRBS in initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on every carrier used in each After determining all TMCC, AC1, and AC2 positions in each corresponding segment and the value of the PRBS sequence in all the active carriers in each segment, TMCC, AC1, AC2, and TSP data are multiplexed into differential segments. $x[TMCCposition[l]] = PilotValue[TMCCposition[l]] \times TMCC$

where *NTMCC* is the number of TMCC in one segment; *PilotValue* is the PRBS sequence in corresponding segment; x[i] is the output segment data. The output of the input AC1 data is:

 $x[AC1position[i]] = PilotValue[AC1position[i]] \times AC1[i]$


AC2 data is:

 $x[AC2position[i]] = PilotValue[AC2position[i]] \times AC2[i]$

Except for the AC1, AC2, and TMCC data positions, the remaining positions in one segment are the TSP data positions.

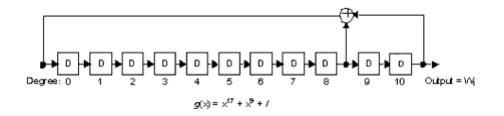
x[i] = data[i]

Structure of OFDM Segment for Differential Modulation

No=108 for Mode1; 216 for Mode2; 432 for Mode 3

Carrier Allocation of CP, AC, and TMCC for Differential Modulation

Segment	11	9	7	5	3	1	0	2	4	6	8	10	12
Mode 1													
СР	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	53	61	11	20	74	35	76	4	40	8	7	98
										574			

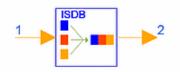

Advanced Design System 2011.01 - DTV Design Library

	20	00	100					ign Sy					- U
AC1_2	28	83	100		40	100	79	97	89	89	64	89	101
AC2_1	3	3	29	28	23	30	3	5	13	72	36	25	10
AC2_2	45	15	41	45	63	81	72	18	93	95	48	30	30
AC2_3	59	40	84	81	85	92	85	57	98	100	52	42	55
AC2_4	77	58	93	91	105	103	89	92	102	105	74	104	81
TMCC_1	13	25	4	36	10	7	49	31	16	5	78	34	23
TMCC_2	50	63	7	48	28	25	61	39	30	10	82	48	37
TMCC_3	70	73	17	55	44	47	96	47	37	21	85	54	51
TMCC_4	83	80	51	59	47	60	99	65	74	44	98	70	68
TMCC_5	87	93	71	86	54	87	104	72	83	61	102	101	105
Mode 2													
СР	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	61	20	35	4	8	98	53	11	74	76	40	7
AC1_2	28	100	40	79	89	64	101	83	101	100	97	89	89
AC1_3	161	119	182	184	148	115	118	169	128	143	112	116	206
AC1_4	191	209	208	205	197	197	136	208	148	187	197	172	209
AC2_1	3	29	23	3	13	36	10	3	28	30	5	72	25
AC2_2	45	41	63	72	93	48	30	15	45	81	18	95	30
AC2_3	59	84	85	85	98	52	55	40	81	92	57	100	42
AC2_4	77	93	105	89	102	74	81	58	91	103	92	105	104
AC2_5	108	108	108	108	108	108	108	108	108	108	108	108	108
AC2_6	111	136	138	113	180	133	111	137	131	111	121	144	118
AC2_7	123	153	189	126	203	138	153	149	171	180	201	156	138
AC2_8	148	189	200	165	208	150	167	192	193	193	206	160	163
AC2_9	166	199	211	200	213	212	185	201	213	197	210	182	189
TMCC_1	13	4	10	49	16	78	23	25	36	7	31	5	34
TMCC_2	50	7	28	61	30	82	37	63	48	25	39	10	48
TMCC_3	70	17	44	96	37	85	51	73	55	47	47	21	54
TMCC_4	83	51	47	99	74	98	68	80	59	60	65	44	70
TMCC_5	87	71	54	104	83	102	105	93	86	87	72	61	101
TMCC_6	133	144	115	139	113	142	121	112	118	157	124	186	131
TMCC_7	171	156	133	147	118	156	158	115	136	169	138	190	145
TMCC_8	181	163	155	155	129	162	178	125	152	204	145	193	159
TMCC_9	188	167	168	173	152	178	191	159	155	207	182	206	176
TMCC_10	201	194	195		169	209	195	179	162	212	191	210	213
Mode 3		1	1	1		1	1	1	1	1	1	1	1
СР	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	20	4	98	11	76	7	61	35	8	53	74	40
AC1_2	28	40	89	101	101	97	89	100	79	64	83	100	89
AC1_3	161	182	148	118	128	112	206	119	184	115	169	143	116
AC1_4	191	208	197	136	148	197	209	209		197	208	187	172
AC1_5	277	251	224					236			200	292	223
J	211	2.51	224	209	290	250	220	250	220	514	221	292	223

Advanced Design System 2011.01 - DTV Design Library

					Ad	vance	d Des	ign Sy	stem	2011.	01 - D	DTV D	esign
AC1_6	316	295	280	299	316	305	244	256	305	317	317	313	305
AC1_7	335	400	331	385	359	332	377	398	364	334	344	328	422
AC1_8	425	421	413	424	403	388	407	424	413	352	364	413	425
AC2_1	3	23	13	10	28	5	25	29	3	36	3	30	72
AC2_2	45	63	93	30	45	18	30	41	72	48	15	81	95
AC2_3	59	85	98	55	81	57	42	84	85	52	40	92	100
AC2_4	77	105	102	81	91	92	104	93	89	74	58	103	105
AC2_5	108	108	108	108	108	108	108	108	108	108	108	108	108
AC2_6	111	138	180	111	131	121	118	136	113	133	137	111	144
AC2_7	123	189	203	153	171	201	138	153	126	138	149	180	156
AC2_8	148	200	208	167	193	206	163	189	165	150	192	193	160
AC2_9	166	211	213	185	213	210	189	199	200	212	201	197	182
AC2_10	216	216	216	216	216	216	216	216	216	216	216	216	216
AC2_11	245	219	252	219	246	288	219	239	229	226	244	221	241
AC2_12	257	288	264	231	297	311	261	279	309	246	261	234	246
AC2_13	300	301	268	256	308	316	275	301	314	271	297	273	258
AC2_14	309	305	290	274	319	321	293	321	318	297	307	308	320
AC2_15	324	324	324	324	324	324	324	324	324	324	324	324	324
AC2_16	352	329	349	353	327	360	327	354	396	327	347	337	334
AC2_17	369	342	354	365	396	372	339	405	419	369	387	417	354
AC2_18	405	381	366	408	409	376	364	416	424	383	409	422	379
AC2_19	415	416	428	417	413	398	382	427	429	401	429	426	405
TMCC_1	13	10	16	23	36	31	34	4	49	78	25	7	5
TMCC_2	50	28	30	37	48	39	48	7	61	82	63	25	10
TMCC_3	70	44	37	51	55	47	54	17	96	85	73	47	21
TMCC_4	83	47	74	68	59	65	70	51	99	98	80	60	44
TMCC_5	87	54	83	105	86	72	101	71	104	102	93	87	61
TMCC_6	133	115	113	121	118	124	131	144	139	142	112	157	186
TMCC_7	171	133	118	158	136	138	145	156	147	156	115	169	190
TMCC_8	181	155	129	178	152	145	159	163	155	162	125	204	193
TMCC_9	188	168	152	191	155	182	176	167	173	178	159	207	206
TMCC_10	201	195	169	195	162	191	213	194	180	209	179	212	210
TMCC_11	220	265	294	241	223	221	229	226	232	239	252	247	250
TMCC_12	223	277	298	279	241	226	266	244	246	253	264	255	264
TMCC_13	233	312	301	289	263	237	286	260	253	267	271	263	270
TMCC_14	267	315	314	296	276	260	299	263	290	284	275	281	286
TMCC_15	287	320	318	309	303	277	303	270	299	321	302	288	317
TMCC_16	360	355	358	328	373	402		<u> </u>	329	337	334	340	347
TMCC_17	372	363		331	<u> </u>		387	<u> </u>	334	374	352	354	361
TMCC_18	379	371	<u> </u>	341		409	397	371	345	394	368	361	375
 TMCC_19	383		<u> </u>		<u> </u>			<u> </u>	368		<u> </u>		
 TMCC_20													
	1									578			

Generation of PRBS Sequence


Initial Sets of PRBS Register

Segment	Initial Sets for Mode 1 †	Initial Sets for Mode 2 ⁺	Initial Sets for Mode 3 ⁺
11	11111111111	11111111111	11111111111
9	1 1 0 1 1 0 0 1 1 1 1	01101011110	1 1 0 1 1 1 0 0 1 0 1
7	0 1 1 0 1 0 1 1 1 1 0	1 1 0 1 1 1 0 0 1 0 1	10010100000
5	0 1 0 0 0 1 0 1 1 1 0	1 1 0 0 1 0 0 0 0 1 0	01110001001
3	1 1 0 1 1 1 0 0 1 0 1	10010100000	00100011001
1	00101111010	00001011000	11100110110
0	1 1 0 0 1 0 0 0 0 1 0	01110001001	00100001011
2	00010000100	00000100100	1 1 1 0 0 1 1 1 1 0 1
4	10010100000	00100011001	01101010011
6	1 1 1 1 0 1 1 0 0 0 0	01100111001	10111010010
8	0 0 0 0 1 0 1 1 0 0 0	1 1 1 0 0 1 1 0 1 1 0	01100010010
10	10100100111	00101010001	1 1 1 1 0 1 0 0 1 0 1
12	01110001001	0010001011	00010011100

⁺ Degree from 0 to 10 in <u>Generation of PRBS Sequence</u>.

References

DTV_PackTMCC

Description: Complete TMCC bits (204 bits) **Library:** DTV, ISDB-T **Class:** SDFDTV_PackTMCC

Parameters

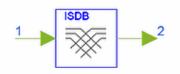
Name	Description	Default	Unit	Туре	Range
Length	length of TMCC transmission format	204		int	204
InformLength	length of TMCC information after CDSC	184		int	184
InitiBit	initialization bit for the DBPSK modulation (1 bit)	1		int	{0, 1}
SynchWord	synchronization word (16 bits): W0, W1	W0		enum	
SegDesc	segment descriptor (3 bits): Differential, Coherent	Differentia	I	enum	

Pin Inputs

Pin	Name	Description	Signal Type
1	input	TMCC information bits after CDSC coding	int

Pin Outputs

Pin	Name	Description	Signal	Туре
2	output	complete TMCC transmission format	int	


Notes/Equations

1. The model is used to multiplex the CDSC coded TMCC information bits (184 bits) and other no-coded 20 bits, which include initialization bit, synchronization of TMCC and system type. According to ISDB-T, the first bit B_0 is the initialization bit for DBPSK modulation; B_0 to B_{16} is a 16-bit synchronization sequence that takes w0 and w1 (the inverse of w0) in turn in every frame; B_{17} to B_{19} represent the segment descriptor (differential modulation 111, coherent modulation 000); B_{20} to B_{203} include TMCC 102 information bits and 82-bit parity (these 184 bits are CDSC coded).

References

Advanced Design System 2011.01 - DTV Design Library

DTV_TimeInterlv

Description: Interleaver and deinterleaver of complex data **Library:** DTV, ISDB-T **Class:** SDFDTV_TimeInterly

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	numbers of carriers in each segment for specific OFDM modulation mode	96		int	{96,192,384} †
Segments	number of segments to be interleaved simultaneously	13		int	[1, 13]
Option	option for interleaving or de-interleaving: Interleave, Deinterleave	Interleave		enum	
Initial_value	initial value in interleaver delay FIFOs	0.0+j*0.0		complex	[0, ∞)
I	factor to multiply when caculating delay period for interleaver branches	0		int	[0, 32]
InitialType	interleaver delay FIFOs initial value type: Const, QPSK, QAM 16, QAM 64	Const		enum	

⁺ Carriers = 96, 192, 384 for mode 1, 2, 3, respectively

Pin Inputs

Pin	Name	Description	Signal Type						
1	input	input symbols to be interleaved	complex						
Pin	Pin Outputs								

Pin	Name	Description	Signal Type
2	output	output symbols after interleaved	complex

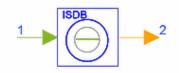
Notes/Equations

- 1. This model performs symbol-wise interleaving over the output symbols of constellation mapping and modulation.
- 2. Time interleaving performed for each segment data is carried out through n_c delay

branches, where n_c is the number of carriers per segment. The delay of each branch is:

 $D = I \times m_i m_i = \{i \times 5\} \mod n_c$ where I is a parameter for each segment described

in Delay Adjustment with Time Interleaving.


3. Signal constellations are output instead of zeros in the delay; this makes power calibration easier.

Mode	I	No. of Symbols for Delay Adjustment	Number of OFDM Frames to be delayed by Delay Adjustment and Time Interleaving
Mode	0	0	0
1	4	28	2
	8	56	4
[16	112	8
	32	224	16
	0	0	0
2	4	14	1
	8	28	2
	16	56	4
	32	112	8
Mode	0	0	0
3	4	109	1
	8	14	1
	16	28	2
	32	56	4

Delay Adjustment with Time Interleaving

References

DTV_TMCCDemod

Description: TMCC differential demodulation **Library:** DTV, ISDB-T **Class:** SDFDTV_TMCCDemod

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of TMCC bits per OFDM frame	204		int	204

Pin Inputs

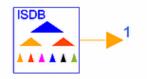
Pin	Name	Description	Signal Type
1	input	TMCC format (204 bits) before demodulation in the receiver	complex
Pin	Output	S	

Pin	Name	Description	Signal Type
2	output	demodulated TMCC transmission format	int

Notes/Equations

1. The model performs DBPSK demodulation for 204 complex signals about the received TMCC format signal.

Based on the received signal, this model makes hard decision on the real part of the complex signal.


 $B'[i] = 0 \ if \ Re\{x[i]\} > 0$ $B'[i] = 1 \ if \ Re\{x[i]\} < 0$

where $0 \le i < 204$. Then set $B_0 = B'$ {0], the DBPSK demodulation as follows: $B_i = B[i] \bigoplus B' [i - 1]$ where i = 1, 2, ..., 203.

References

Advanced Design System 2011.01 - DTV Design Library

DTV_TMCCInfo

Description: TMCC information for 102 bits from b20 to b121 in TMCC bit assignment **Library:** DTV, ISDB-T **Class:** SDFDTV_TMCCInfo

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of TMCC information bits	102		int	{102}
Description	ion system description (2 bits): ISDB-T, Reserved Des 1, Reserved Des 2, Reserved Des 3			enum	
Count	nt index for transmission parameter change (4 bits): Ordinary, Frames 15, Frames 14, Frames 13, Frames 12, Frames 11, Frames 10, Frames 9, Frames 8, Frames 7, Frames 6, Frames 5, Frames 4, Frames 3, Frames 2, Frames 1			enum	
Flag	control flag for alert broadcasting (1 bit): Ordinary Control, Switch-on	Ordinary Control		enum	
CurFlag	current partial reception layer (1 bit): Unused Cur Flag, Used Cur Flag	Used Cur Flag		enum	
CurA_Mod	current modulation for Layer A (3 bits): CurA DQPSK, CurA QPSK, CurA 16QAM, CurA 64QAM, CurA Reserved Mod 1, CurA Reserved Mod 2, CurA Reserved Mod 3, CurA Unused Layer Mod	CurA DQPSK		enum	
CurA_Rate	current code rate for Layer A (3 bits): CurA 1/2, CurA 2/3, CurA 3/4, CurA 5/6, CurA 7/8, CurA Reserved Cod 1, CurA Reserved Cod 2, CurA Unused Layer Cod	CurA 1/2		enum	
CurA_Interlv	current time interleaver for Layer A (3 bits): CurA Int 0 0 0, CurA Int 4 2 1, CurA Int 8 4 2, CurA Int 16 8 4, CurA Int 32 16 8, CurA Reserved Int 1, CurA Reserved Int 2, CurA Unused Layer Int	CurA Int 8 4 2		enum	
CurA_NumSeg	current number of segments for Layer A (4 bits): CurA Reserved Seg 1, CurA Seg 1, CurA Seg 2, CurA Seg 3, CurA Seg 4, CurA Seg 5, CurA Seg 6, CurA Seg 7, CurA Seg 8, CurA Seg 9, CurA Seg 10, CurA Seg 11, CurA Seg 12, CurA Seg 13, CurA Reserved Seg 2, CurA Unused Layer Seg	CurA Seg 13		enum	
CurB_Mod	current modulation for Layer B (3 bits): CurB DQPSK, CurB QPSK, CurB 16QAM, CurB 64QAM, CurB Reserved Mod 1, CurB Reserved Mod 2, CurB Reserved Mod 3, CurB Unused Layer Mod	CurB 16QAM		enum	

	Advanced Design System 2011.01 -	DIV Design Lib	rary	
CurB_Rate	current code rate for Layer B (3 bits): CurB 1/2, CurB 2/3, CurB 3/4, CurB 5/6, CurB 7/8, CurB Reserved Cod 1, CurB Reserved Cod 2, CurB Unused Layer Cod	CurB 1/2	enum	
CurB_Interlv	current time interleaver for Layer B (3 bits): CurB Int 0 0 0, CurB Int 4 2 1, CurB Int 8 4 2, CurB Int 16 8 4, CurB Int 32 16 8, CurB Reserved Int 1, CurB Reserved Int 2, CurB Unused Layer Int	CurB Int 8 4 2	enum	
CurB_NumSeg	current number of segments for Layer B (4 bits): CurB Reserved Seg 1, CurB Seg 1, CurB Seg 2, CurB Seg 3, CurB Seg 4, CurB Seg 5, CurB Seg 6, CurB Seg 7, CurB Seg 8, CurB Seg 9, CurB Seg 10, CurB Seg 11, CurB Seg 12, CurB Seg 13, CurB Reserved Seg 2, CurB Unused Layer Seg	CurB Unused Layer Seg	enum	
CurC_Mod	current modulation for Layer C (3 bits): CurC DQPSK, CurC QPSK, CurC 16QAM, CurC 64QAM, CurC Reserved Mod 1, CurC Reserved Mod 2, CurC Reserved Mod 3, CurC Unused Layer Mod	CurC 64QAM	enum	
CurC_Rate	current code rate for Layer C (3 bits): CurC 1/2, CurC 2/3, CurC 3/4, CurC 5/6, CurC 7/8, CurC Reserved Cod 1, CurC Reserved Cod 2, CurC Unused Layer Cod	CurC 1/2	enum	
CurC_Interlv	current time interleaver for Layer C (3 bits): CurC Int 0 0 0, CurC Int 4 2 1, CurC Int 8 4 2, CurC Int 16 8 4, CurC Int 32 16 8, CurC Reserved Int 1, CurC Reserved Int 2, CurC Unused Layer Int	CurC Int 8 4 2	enum	
CurC_NumSeg	current number of segments for Layer C (4 bits): CurC Reserved Seg 1, CurC Seg 1, CurC Seg 2, CurC Seg 3, CurC Seg 4, CurC Seg 5, CurC Seg 6, CurC Seg 7, CurC Seg 8, CurC Seg 9, CurC Seg 10, CurC Seg 11, CurC Seg 12, CurC Seg 13, CurC Reserved Seg 2, CurC Unused Layer Seg	CurC Seg 6	enum	
NextFlag	next partial reception layer (1 bit): Unused Next Flag, Used Next	Unused Next Flag	enum	
NextA_Mod	next modulation for Layer A (3 bits): NextA DQPSK, NextA QPSK, NextA 16QAM, NextA 64QAM, NextA Reserved Mod 1, NextA Reserved Mod 2, NextA Reserved Mod 3, NextA Unused Layer Mod	NextA QPSK	enum	
NextA_Rate	next code rate for Layer A (3 bits): NextA 1/2, NextA 2/3, NextA 3/4, NextA 5/6, NextA 7/8, NextA Reserved Cod 1, NextA Reserved Cod 2, NextA Unused Layer Cod	NextA 1/2	enum	
NextA_Interlv	next time interleaving for Layer A (3 bits): NextA Int 0 0 0, NextA Int 4 2 1, NextA Int 8 4 2, NextA Int 16 8 4, NextA Int 32 16 8, NextA Reserved Int 1, NextA Reserved Int 2, NextA Unused Layer Int	NextA Int 8 4 2	enum	
NextA_NumSeg	next number of segments for Layer A (4 bits): NextA Reserved Seg 1, NextA Seg 1, NextA Seg 2, NextA Seg 3, NextA Seg 4, NextA Seg 5, NextA Seg 6, NextA Seg 7, NextA Seg 8, NextA Seg 9, NextA Seg 10, NextA Seg 11,	NextA Reserved Seg 1	enum	

	Advanced Design System 2011.01 - NextA Seg 12, NextA Seg 13, NextA Reserved Seg 2, NextA Unused Layer Seg	DTV Design Librar	y
NextB_Mod	next modulation for Layer B (3 bits): NextB DQPSK, NextB QPSK, NextB 16QAM, NextB 64QAM, NextB Reserved Mod 1, NextB Reserved Mod 2, NextB Reserved Mod 3, NextB Unused Layer Mod	NextB 16QAM	enum
NextB_Rate	next code rate for Layer B (3 bits): NextB 1/2, NextB 2/3, NextB 3/4, NextB 5/6, NextB 7/8, NextB Reserved Cod 1, NextB Reserved Cod 2, NextB Unused Layer Cod	NextB 1/2	enum
NextB_Interlv	next time interleaving for Layer B (3 bits): NextB Int 0 0 0, NextB Int 4 2 1, NextB Int 8 4 2, NextB Int 16 8 4, NextB Int 32 16 8, NextB Reserved Int 1, NextB Reserved Int 2, NextB Unused Layer Int	NextB Int 8 4 2	enum
NextB_NumSeg	next number of segments for Layer B (4 bits): NextB Reserved Seg 1, NextB Seg 1, NextB Seg 2, NextB Seg 3, NextB Seg 4, NextB Seg 5, NextB Seg 6, NextB Seg 7, NextB Seg 8, NextB Seg 9, NextB Seg 10, NextB Seg 11, NextB Seg 12, NextB Seg 13, NextB Reserved Seg 2, NextB Unused Layer Seg	NextB Seg 6	enum
NextC_Mod	next modulation for Layer C (3 bits): NextC DQPSK, NextC QPSK, NextC 16QAM, NextC 64QAM, NextC Reserved Mod 1, NextC Reserved Mod 2, NextC Reserved Mod 3, NextC Unused Layer Mod	NextC QPSK	enum
NextC_Rate	next code rate for Layer C (3 bits): NextC 1/2, NextC 2/3, NextC 3/4, NextC 5/6, NextC 7/8, NextC Reserved Cod 1, NextC Reserved Cod 2, NextC Unused Layer Cod	NextC 1/2	enum
NextC_Interlv	next time interleaving for Layer C (3 bits): NextC Int 0 0 0, NextC Int 4 2 1, NextC Int 8 4 2, NextC Int 16 8 4, NextC Int 32 16 8, NextC Reserved Int 1, NextC Reserved Int 2, NextC Unused Layer Int	NextC Int 8 4 2	enum
NextC_NumSeg	next number of segments for Layer C (4 bits): NextC Reserved Seg 1, NextC Seg 1, NextC Seg 2, NextC Seg 3, NextC Seg 4, NextC Seg 5, NextC Seg 6, NextC Seg 7, NextC Seg 8, NextC Seg 9, NextC Seg 10, NextC Seg 11, NextC Seg 12, NextC Seg 13, NextC Reserved Seg 2, NextC Unused Layer Seg	NextC Seg 5	enum
FutureUse	reserved for future use (all set to "1" 15 bits)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	int "1111111111111111" array

Pin Outputs

Pin	Name	Description	Signal Type
1	output	TMCC information bits (B20-B121)	int

Notes/Equations

1. This model is used to generate the 102 bits of TMCC information. For the parameters in this model, TMCC information bits are generated according to <u>Bit Assignments for</u>

Advanced Design System 2011.01 - DTV Design Library

<u>TMCC Information</u>; specification bit assignments are given in <u>Transmission</u> <u>Parameters</u> through *Number of Segments*.

Bit Assignments for TMCC Information

Bits	No. of Bits	Purpose	Content	Reference
B ₂₀ – I	3 2	System descriptor	System descriptor	System Descriptor
21 B ₂₂ - I 25	8 4	Countdown index	Countdown index	Countdown Index
B ₂₆	1	Switch-on control flag used for alert broadcasting	Switch-on control flag used for alert broadcasting	Switch-on Control Flag used for Albert Broadcasting
В ₂₇	1	Current configuration information	Partial-reception flag	Partial Reception Flag
B ₂₈ - 1 40	313	Current configuration information	Transmission parameters for layer a	Transmission Parameters
B ₄₁ - 1 53	313	Current configuration information	Transmission parameters for layer b	Transmission Parameters
B ₅₄ – 1 66	813	Current configuration information	Transmission parameters for layer c	Transmission Parameters
B ₆₇	1	Next configuration information	Partial-reception flag	Partial Reception Flag
B ₆₈ – 1 80	3 13	Next configuration information	Transmission parameters for layer a	Transmission Parameters
B ₈₁ – 1 93	3 13	Next configuration information	Transmission parameters for layer b	Transmission Parameters
B ₉₄ – 1 106	3 13	Next configuration information	Transmission parameters for layer c	Transmission Parameters
B ₁₀₇ – B ₁₂₁	15	(reserved for future use)	(reserved for future use)	All set to "1"

Transmission Parameters

	No. of Bits	Reference
Modulation	3	Modulation Scheme of OFDM Carrier
Code Rate	3	Code Rate of Inner Code
Time Interleaving	3	Time Interleaving
Number of Segments	4	Number of Segments

$B_{20} - B_{21}$	System
00	ISDB-T using 13 segments
01,10,11	(reserved for future use)

Countdown Index

$B_{22} - B_{25}$	Description	
1111	15 Frames before changing transmission parameters	
1110	14 Frames before changing transmission parameters	
1101	13 Frames before changing transmission parameters	
1100	12 Frames before changing transmission parameters	
0010	3 Frames before changing transmission parameters	
0001	2 Frames before changing transmission parameters	
0000	1 Frames before changing transmission parameters	

Switch-on Control Flag used for Albert Broadcasting

B ₂₆	Description
0	Ordinary
1	Switch-on

Partial Reception Flag

B ₂₆ , B ₂₇	Partial Reception Layer		
0	Not used		
1	Used		

Modulation Scheme of OFDM Carrier

	Modulation	
000	DQPSK	
001	QPSK	
010	16-QAM	
011	64-QAM	
100-110	Reserved	
111	Not used	
Code Rate of Inner Code		

	Code Rate
000	1/2
001	2/3
010	3/4
011	5/6
100	7/8
101-110	Reserved
111	Not used

Time Interleaving

	Time Interleaving Parameter I
001	4(Mode 1), 4(Mode 2), 4(Mode 3)
010	8(Mode 1), 8(Mode 2), 8(Mode 3)
011	16(Mode 1), 16(Mode 2), 16(Mode 3)
100	32(Mode 1), 32(Mode 2), 32(Mode 3)
101-110	Reserved
111	Not used

Number of Segments

	No. of Segments used in Layer
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	Reserved
1111	Not used

References

DTV_TMCCMod

Description: TMCC differential modulation Library: DTV, ISDB-T Class: SDFDTV_TMCCMod

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of TMCC bits per OFDM frame	204		int	204

Pin Inputs

Pin	Name	Description	Signal Type
1	input	received TMCC transmission format (204 bits) before modulation in the transmitter	int
Pin	Output	ts	

Pin	Outputs
-----	---------

Pin	Name	Description	Signal Type
2	output	modulated TMCC transmission format	complex

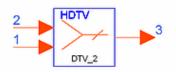
Notes/Equations

- 1. The model performs DBPSK modulation.
- 2. $B'[0] = B_0$; DBPSK modulation is:

 $B'[i] = B_i \oplus B'_{i-1}$ where i = 1, 2, ..., 203. Then

$$x[i] = 1 + j0$$
 if $(\vec{B}[i] = 0)$
 $x[i] = -1 + j0$ if $(\vec{B}[i] = 1)$

coded bits $B'[0] \sim B'[203]$ are converted to {1.0, 0}, {-1.0, 0}. where i = 0, 1, ..., 203.


References

r

Multiplex Components for DTV Design Library

- DTV CommCtrl2 (dtv)
- DTV CommCtrl3 (dtv)
- DTV DistCtrl2 (dtv)
- DTV DistCtrl3 (dtv)
- DTV SplitThreeLayData (dtv)
- DTV SplitThreeLayTSP (dtv)
- DTV SplitTwoLayData (dtv)
- DTV SplitTwoLayTSP (dtv)
- DTV SynLayTMCC1 (dtv)
- DTV SynLayTMCC2 (dtv)
- DTV SynLayTMCC3 (dtv)
- DTV SynThreeLayData (dtv)
- DTV SynThreeLayTSP (dtv)
- DTV SynTwoLayData (dtv)
- DTV SynTwoLayTSP (dtv)

DTV_CommCtrl2

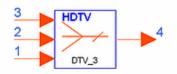
Description: 2-input commutator with input particle number control **Library:** DTV, Multiplex **Class:** SDFDTV_CommCtrl2

Parameters

Name	Description	Default	Unit	Туре	Range
NumInput1	number of particles from input 1	1		int	[1,∞)
NumInput2	number of particles from input 2	1		int	[1,∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	in1	input 1	anytype
2	in2	input 2	anytype


Pin Outputs

Pin	Name	Description	Signal Type
3	output	output comprised of two inputs	anytype

Notes/Equations

 This model is used to combine two input signals into one. NumInput1 of input 1 and NumOutput2 of input 2 data particles are combined and output.

DTV_CommCtrl3

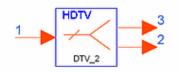
Description: 3-input commutator with input particle number control **Library:** DTV, Multiplex **Class:** SDFDTV_CommCtrl3

Parameters

Name	Description	Default	Unit	Туре	Range
NumInput1	number of particles from input 1	1		int	[1,∞)
NumInput2	number of particles from input 2	1		int	[1,∞)
NumInput3	number of particles from input 3	1		int	[1, ∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	in1	input 1	anytype
2	in2	input 2	anytype
3	in3	input 3	anytype


Pin Outputs

Pin	Name	Description	Signal Type
4	output	output comprised of three inputs	anytype

Notes/Equations

1. This model is used to combine three input signals into one. NumInput1 of input 1, NumOutput2 of input 2, and NumInput3 of input 3 data particles are combined and output.

DTV_DistCtrl2

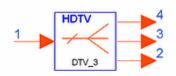
Description: 2-output distributor with output particle number control **Library:** DTV, Multiplex **Class:** SDFDTV_DistCtrl2

Parameters

Name	Description	Default	Unit	Туре	Range
NumOutput1	number of particles directed to output 1	1		int	[1,∞)
NumOutput2	number of particles directed to output 2	1		int	[1,∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	input	input to be distributed over the two outputs	anytype


Pin Outputs

Pin	Name	Description	Signal Type
2	out1	output 1	anytype
3	out2	output 2	anytype

Notes/Equations

 This model is used to distribute one data stream to two outputs. NumOutput1 and NumOutput2 data particles are distributed to output 1, and output 2, respectively.

DTV_DistCtrl3

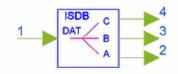
Description: 3-output distributor with output particle number control **Library:** DTV, Multiplex **Class:** SDFDTV_DistCtrl3

Parameters

Name	Description	Default	Unit	Туре	Range
NumOutput1	number of particles directed to output 1	1		int	[1,∞)
NumOutput2	number of particles directed to output 2	1		int	[1,∞)
NumOutput3	number of particles directed to output 3	1		int	[1,∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	input	input to be distributed over the three outputs	anytype


Pin Outputs

Pin	Name	Description	Signal Type
2	out1	output 1	anytype
3	out2	output 2	anytype
4	out3	output 3	anytype

Notes/Equations

1. This model is used to distribute one data stream to three outputs. NumOutput1, NumOutput2 and NumOutput3 data particles are distributed to output 1, output 2, and output 3, respectively.

DTV_SplitThreeLayData

Description: Data stream splitter into 3-layer data **Library:** DTV, Multiplex **Class:** SDFDTV_SplitThreeLayData

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one segment	432		int	{96,108,192,216,384,432} †
SegmentsA	number of segments in layer A	1		int	{1} ⁺⁺
SegmentsB	number of segments in layer B	1		int	[1, 12] ++
SegmentsC	number of segments in layer C	1		int	[1, 12] ††

⁺ According to ISDB-T, the Carriers are 96 and 108, 192 and 216, 384 and 432, corresponding to mode 1, mode 2, and mode 3, respectively. ⁺⁺ The sum of SegmentsA, SegmentsB, and SegmentsC \leq 13.

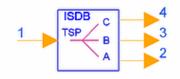
Pin Inputs

Pin	Name	Description	Signal Type
1	Synt	synthesis of 3-layer data streams	complex

Pin Outputs

Pin	Name	Description	Signal Type
2	LayA	layer A output	complex
3	LayB	layer B output	complex
4	LayC	layer C output	complex

Notes/Equations


 The model is used to demultiplex one synthetic stream into a 3-layer data stream for use in ISDB-T 3-layer systems only. Each firing, Synt consumes (SegmentsA+SegmentsB+SegmentsC)×Carriers tokens;

LayA produces SegmentsA×Carriers tokens; LayB produces SegmentsB×Carriers tokens; LayC produces SegmentsC×Carriers tokens.

References

Advanced Design System 2011.01 - DTV Design Library

DTV_SplitThreeLayTSP

Description: TSP stream splitter into 3-layer TSP stream **Library:** DTV, Multiplex **Class:** SDFDTV_SplitThreeLayTSP

Parameters

Name	Description	Default	Unit	Туре	Range
Length	number of bytes in one TSP	204		int	{204}
SegmentsA	number of segments in layer A	1		int	{1} †
LayerA_Modulation	modulation mode for layer A: A DQPSK, A QPSK, A 16QAM, A 64QAM	A DQPSK		enum	
LayerA_Convolutional_Code	convolutional code rate for layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum	
SegmentsB	number of segments in layer B	5		int	[1, 12] †
LayerB_Modulation	modulation mode for Layer B: B DQPSK, B QPSK, B 16QAM, B 64QAM	B QPSK		enum	
LayerB_Convolutional_Code	convolutional code rate for layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 7/8		enum	
SegmentsC	number of segments in layer C	7		int	[1, 12] †
LayerC_Modulation	modulation mode for layer C: C DQPSK, C QPSK, C 16QAM, C 64QAM	C 64QAM		enum	
LayerC_Convolutional_Code	convolutional code rate for layer C: C 1/2, C 2/3, C 3/4, C 5/6, C 7/8	C 7/8		enum	

[†] The sum of SegmentsA, SegmentsB and SegmentsC < 13.

Pin Inputs

Pin	Name	Description	Signal Type
1	input	input TSP data stream to be split	int

Pin Outputs

Pin	Name	Description	Signal Type
2	OutA	layer A output	int
3	OutB	layer B output	int
4	OutC	layer C output	int

Notes/Equations

- 1. This model is used in ISDB-T 3-layer systems to split one TSP data stream into a 3layer TSP data stream according to the table below.
- 2. One TSP data stream is split into a 3-layer TSP data stream: layer A, layer B, and layer C.

The number of TSPs per segment in each layer is determined according to modulation mode and convolutional code rate.

The model determines the total number of TSPs in each layer by the number of TSPs per segments and the number of segments in each layer in one OFDM frame. To increase simulation speed, the total number of TSPs in each layer is divided by the greatest common divisor, which is the greatest common divisor of the total number of TSPs in each layer. An example follows for mode 1.

SegmentsA=1 LayerA_Modulation= A 64QAM LayerA_Convolutional_Code= A 2/3

SegmentsB=5 LayerB_Modulation= B DQPSK LayerB_Convolutional_Code= B 1/2

SegmentsC=7 LayerC_Modulation= C 16QAM LayerC_Convolutional_Code= C 3/4

Referring to the following table, the number of TSPs is 48, 12, and 36 per segment, respectively.

The total number of TSPs in each layer is 48×1 , 12×5 and 36×7 in one OFDM frame; the greatest common divisor is 12. After dividing, the total number of TSPs is 4, 5 and 21, respectively. Then, the model splits $204 \times 4 \times 1$ integers to OutA pin, $204 \times 1 \times 5$ integers to OutB pin, and $204 \times 3 \times 7$ integers to OutC pin.

Carrier Modulation	Convolutional Code	Number of Transmitting TSPs + (Mode 1/2/3)
DQPSK, QPSK	1/2	12/24/48
п п	2/3	16/32/64
пп	3/4	18/36/72
п п	5/6	20/40/80
пп	7/8	21/42/84
16-QAM	1/2	24/48/96
пп	2/3	32/64/128
п п	3/4	36/72/144
пп	5/6	40/80/160
п п	7/8	42/84/168
64-QAM	1/2	36/72/144
п п	2/3	48/96/192
п п	3/4	54/108/216
п п	5/6	60/120/240
пп	7/8	63/126/252

Transmitting TSPs per Segment for ISDB-T

References

DTV_SplitTwoLayData

Description: Data stream splitter into 2-layer data **Library:** DTV, Multiplex Class: SDFDTV_SplitTwoLayData

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one segment	432		int	{96,108,192,216,384,432}†
SegmentsA	number of segments in layer A	1		int	[1, 12] ++
SegmentsB	number of segments in layer B	1		int	[1, 12] ++

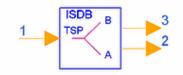
⁺ According to ISDB-T, the number of Carriers is 96 and 108, 192 and 216, 384 and 432, corresponding to mode 1, mode 2, and mode 3, respectively.

 $^{++}$ The sum of SegmentsA and SegmentsB \leq 13.

Pin Inputs

Pin	Name	Description	Signal Type
1	Synt	synthesis of 2-layer data stream	complex

Pin Outputs


Pin	Name	Description	Signal Type
2	LayA	layer A output	complex
3	LayB	layer B output	complex

Notes/Equations

- 1. The model is used in ISDB-T 2-layer systems to demultiplex one synthetic stream into a 2-layer data stream.
- 2. Each firing, Synt consumes (SegmentsA+SegmentsB)×Carriers tokens; LayA produces SegmentsA×Carriers tokens; LayB produces SegmentsB×Carriers tokens.

References

DTV_SplitTwoLayTSP

Description: TSP stream splitter into 2-layer TSP stream **Library:** DTV, Multiplex **Class:** SDFDTV_SplitTwoLayTSP

Parameters

Name	Description	Default	Unit	Туре	Range
Length	number of bytes in one TSP	204		int	{204}
SegmentsA	number of segments in layer A	5		int	[1, 12] †
LayerA_Modulation	modulation mode for layer A: A DQPSK, A QPSK, A 16QAM, A 64QAM	A DQPSK		enum	
LayerA_Convolutional_Code	convolutional code rate for layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum	
SegmentsB	number of segments in layer B	8		int	[1, 12] †
LayerB_Modulation	modulation mode for layer B: B DQPSK, B QPSK, B 16QAM, B 64QAM	B DQPSK		enum	
LayerB_Convolutional_Code	convolutional code rate for layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 7/8		enum	

⁺ The sum of SegmentsA and SegmentsB \leq 13.

Pin Inputs

Pin	Name	Description	Signal Type
1	input	input TSP data stream to be split	int

Pin Outputs

Pin	Name	Description	Signal Type
2	OutA	layer A output	int
3	OutB	layer B output	int

Notes/Equations

- 1. This model is used in ISDB-T 2-layer systems to split one TSP data stream into a 2layer TSP data stream according to the table below.
- 2. The TSP stream is split into a 2-layer TSP data stream: layer A and layer B. The number of TSPs per segment in each layer is determined according to modulation mode and convolutional code rate.

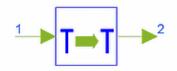
The total number of TSPs in each layer is determined by the number of TSPs per

segments and the number of segments in each layer in one OFDM frame. To increase simulation speed, the total number of TSPs in each layer is divided by the greatest common divisor, which is the greatest common divisor between the total number of TSPs in each layer. An example follows for mode 1.

SegmentsA=5 LayerA_Modulation= A DQPSK LayerA_Convolutional_Code= A 1/2

SegmentsB=7 LayerB_Modulation= B 16QAM LayerB_Convolutional_Code= B 3/4

Referring to the following table, the number of TSPs is 12 and 36 per segment, respectively. The total number of TSPs in each layer is 12×5 and 36×7 in one OFDM frame; the greatest common divisor is 12. After dividing, the total number of TSPs is 5 and 21, respectively. So, the model distributes $204 \times 1 \times 5$ integers to OutA pin, and $204 \times 3 \times 7$ integers to OutB pin.


Modulation	Convolutional Code	Number of Transmitting TSPs + (Mode 1/2/3)
DQPSK, QPSK	1/2	12/24/48
пп	2/3	16/32/64
пп	3/4	18/36/72
н н	5/6	20/40/80
пп	7/8	21/42/84
16-QAM	1/2	24/48/96
пп	2/3	32/64/128
н н	3/4	36/72/144
пп	5/6	40/80/160
пп	7/8	42/84/168
64-QAM	1/2	36/72/144
пп	2/3	48/96/192
н н	3/4	54/108/216
н н	5/6	60/120/240
пп	7/8	63/126/252

Transmitting TSPs per Segment for ISDB-T

⁺ Number of transmitting TSPs per one OFDM frame

References

DTV_SynLayTMCC1

Description: Synthesizer for 1-layer TMCC received into one TMCC format **Library:** DTV, Multiplex **Class:** SDFDTV_SynLayTMCC1

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
Segments	number of segments	1	seg		int	[1, 13]

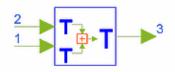
Pin Inputs

Pin Name Description Signal Type

1 input 1-layer input complex

Pin Outputs

Pin	Name Description	Signal Type
2	output synthesis of 1-layer TMCC stream	complex


Notes/Equations

- 1. The model is used in ISDB-T 1-layer systems to synthesize one layer TMCC streams into one synthetic stream.
- Because there is one received TMCC signal from each segment in every layer in the DTV_DemuxCohSegs and DTV_DemuxDiffSegs models, all TMCC received must be synthesized to one TMCC signal, as follows.

```
Complex in(0.0,0.0),out(0.0,0.0);
for (int i=0; i<seg ;i++)
  in += (input%(i)).operator Complex();
  out = in/seg;
output%(0) << out;</pre>
```

References

DTV_SynLayTMCC2

Description: Synthesizer for 2-layer TMCC received into one TMCC format **Library:** DTV, Multiplex **Class:** SDFDTV_SynLayTMCC2

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
SegmentsA	number of segments in layer A	1	segA		int	[1, 12] †
SegmentsB	number of segments in layer B	1	segB		int	[1, 12] †

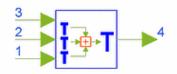
⁺ The sum of SegmentsA and SegmentsB \leq 13.

Pin Inputs

Pin	Name	Description	Signal Type
1	LayA	layer A input	complex
2	LayB	layer B input	complex

Pin Outputs

Pin	Name	Description	Signal Type
3	Synt	synthesis of 2-layer TMCC streams	complex


Notes/Equations

- 1. The model is used to synthesize 2-layer TMCC streams into one synthetic stream, for use in ISDB-T 2-layer systems.
- Because there is one received TMCC signal from each segment in every layer in the DTV_DemuxCohSegs (dtv) and DTV_DemuxDiffSegs (dtv) models, all received TMCC must be synthesized to one TMCC signal, as follows.

```
Complex in1(0.0,0.0),in2(0.0,0.0),out(0.0,0.0);
for (int i=0; i<segA ;i++)
in1 += (LayA%(i)).operator Complex();
for ( i=0; i<segB; i++)
in2 += (LayB%(i)).operator Complex();
out = (in1+in2)/sumAB;
Synt%(0) << out;</pre>
```

Advanced Design System 2011.01 - DTV Design Library 1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_SynLayTMCC3

Description: Synthesizer for 3-layer TMCC received into one TMCC format **Library:** DTV, Multiplex **Class:** SDFDTV_SynLayTMCC3

Parameters

Name	Description	Default	Symbol	Unit	Туре	Range
SegmentsA	number of segments in layer A	1	segA		int	{1} +, ++
SegmentsB	number of segments in layer B	1	segB		int	[1, 12] ++
SegmentsC	number of segments in layer C	1	segC		int	[1, 12] ++

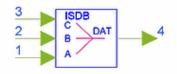
⁺ According to ISDB-T, the number of segments in the first layer must be 1. ⁺⁺ The sum of SegmentsA, SegmentsB and SegmentsC \leq 13.

Pin Inputs

Pin	Name	Description	Signal Type
1	LayA	layer A input	complex
2	LayB	layer B input	complex
3	LayC	layer C input	complex

Pin Outputs

Pin	Name	Description	Signal Type
4	Synt	synthesis of 3-layer TMCC streams	complex


Notes/Equations

- 1. This model is used in ISDB-T 3-layer systems to synthesize 3-layer TMCC streams into one synthetic stream.
- Because there is one received TMCC signal from each segment in every layer in the DTV_DemuxCohSegs (dtv) and DTV_DemuxDiffSegs (dtv) models, all received TMCC must be synthesized into one TMCC signal, as follows.

```
Complex in1(0.0,0.0),in2(0.0,0.0),in3(0.0,0.0),out(0.0,0.0);
for (int i=0; i<segA; i++)
    in1 += (LayA%(i)).operator Complex();
for ( i=0; i<segB; i++)
    in2 += (LayB%(i)).operator Complex();
for ( i=0; i<segC; i++)
    in3 += (LayC%(i)).operator Complex();
    out = (in1+in2+in3)/sumABC;</pre>
```

References

DTV_SynThreeLayData

Description: Synthesizer for 3-layer data into one stream **Library:** DTV, Multiplex **Class:** SDFDTV_SynThreeLayData

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one segment	432		int	{96,108,192,216,384,432}†
SegmentsA	number of segments in layer A	1		int	{1} ++, +++
SegmentsB	number of segments in layer B	1		int	[1, 12] +++
SegmentsC	number of segments in layer C	1		int	[1, 12] +++

⁺ According to ISDB-T, the Carriers should be 96 and 108, 192 and 216, 384 and 432, corresponding to mode 1, mode 2, and mode 3, respectively.

⁺⁺ According to ISDB-T, the number of segments in the first layer must be 1.

+++ The sum of SegmentsA, SegmentsB and SegmentsC \leq 13.

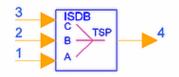
Pin Inputs

Pin	Name	Description	Signal Type
1	LayA	layer A input	complex
2	LayB	layer B input	complex
3	LayC	layer C input	complex

Pin Outputs

Pin	Name	Description	Signal Type
4	Synt	synthesis of 3-layer data streams	complex

Notes/Equations


- 1. This model is used in ISDB-T 3-layer systems to multiplex 3-layer data streams into one synthetic stream.
- Each firing, LayA consumes SegmentsA×Carriers tokens; LayB consumes SegmentsB×Carriers tokens; LayC consumes SegmentsC×Carriers tokens; Synt produces (SegmentsA+SegmentsB+SegmentsC)×Carriers tokens.

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);

Advanced Design System 2011.01 - DTV Design Library Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_SynThreeLayTSP

Description: Synthesizer for 3-layer TSP into one TSP stream **Library:** DTV, Multiplex **Class:** SDFDTV_SynThreeLayTSP

Parameters

Name	Description	Default	Unit	Туре	Range
Length	number of bytes in one TSP	204		int	{204}
SegmentsA	number of segments in layer A	1		int	{1} †
LayerA_Modulation	modulation mode for layer A: A DQPSK, A QPSK, A 16QAM, A 64QAM	A DQPSK		enum	
LayerA_Convolutional_Code convolutional code rate for layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8		A 1/2		enum	
SegmentsB	number of segments in layer B 5			int	[1, 12] †
LayerB_Modulation	modulation mode for layer B: B DQPSK, B QPSK, B 16QAM, B 64QAM	B QPSK		enum	
LayerB_Convolutional_Code	convolutional code rate for layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 7/8		enum	
SegmentsC number of segments in layer C		7		int	[1, 12] †
LayerC_Modulation modulation mode for layer C: C DQPSK, C QPSK, C 16QAM, C 64QAM		C 64QAM		enum	
LayerC_Convolutional_Code convolutional code rate for layer C: C 1/2, C 2/3, C 3/4, C 5/6, C 7/8		C 7/8		enum	

[†] The sum of SegmentsA, SegmentsB and SegmentsC \leq 13.

Pin Inputs

Pin	Name	Description	Signal Type	
1	InA	layer A input	int	
2	InB	layer B input	int	
3	InC	layer B input	int	
Din Outpute				

Pin Outputs

Pin	Name	Description	Signal Type
4	output	output TSP stream comprised of 3-layer TSP streams	int

- 1. This model is used in ISDB-T 3-layer systems to synthesize 3-layer TSP streams into one TSP stream, according to the table below.
- 2. The model synthesizes the 3-layer TSP streams (layer A, layer B, and layer C) into one TSP stream.

The number of TSPs per segment in each layer is determined according to modulation mode and convolutional code rate.

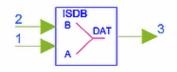
The model determines the total number of TSPs in each layer by the number of TSPs per segments and the number of segments in each layer in one OFDM frame. To increase simulation speed, the total number of TSPs in each layer is divided by the greatest common divisor, which is the greatest common divisor of the total number of TSPs in each layer. An example follows for mode 1.

SegmentsA=1 LayerA_Modulation= A 64QAM LayerA_Convolutional_Code= A 2/3

SegmentsB=5 LayerB_Modulation= B DQPSK LayerB_Convolutional_Code= B 1/2

SegmentsC=7 LayerC_Modulation= C 16QAM LayerC_Convolutional_Code= C 3/4

Referring to the following table, the number of TSPs is 48, 12, and 36 per segment, respectively. The total number of TSPs in each layer is 48×1 , 12×5 and 36×7 in one OFDM frame; the greatest common divisor is 12. After dividing, the total number of TSPs is 4, 5 and 21, respectively. Then, the model combines $204 \times 4 \times 1$ integers in InA pin, $204 \times 1 \times 5$ integers in InB pin, and $204 \times 3 \times 7$ integers in InC pin into the output TSP stream.


Carrier Modulation	Convolutional Code	Number of Transmitting TSPs + (Mode 1/2/3)
DQPSK, QPSK	1/2	12/24/48
пп	2/3	16/32/64
п п	3/4	18/36/72
п п	5/6	20/40/80
пп	7/8	21/42/84
16-QAM	1/2	24/48/96
п п	2/3	32/64/128
п п	3/4	36/72/144
п п	5/6	40/80/160
пп	7/8	42/84/168
64-QAM	1/2	36/72/144
п п	2/3	48/96/192
п п	3/4	54/108/216
нп	5/6	60/120/240
пп	7/8	63/126/252

Transmitting TSPs per Segment for ISDB-T

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_SynTwoLayData

Description: Synthesizer for 2-layer data into one stream **Library:** DTV, Multiplex **Class:** SDFDTV_SynTwoLayData

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of carriers in one segment	432		int	{96,108,192,216,384,432} †
SegmentsA	number of segments in layer A	1		int	[1, 12] ++
SegmentsB	number of segments in layer B	1		int	[1, 12] ††

⁺ According to ISDB-T, Carriers should be 96 and 108, 192 and 216, 384 and 432, corresponding to mode 1, mode 2, and mode 3, respectively. ⁺⁺ The sum of SegmentsA and SegmentsB \leq 13.

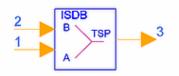
Pin Inputs

Pin	Name	Description	Signal Type
1	LayA	layer A input	complex

2 LayB layer B input complex

Pin Outputs

Pin	Name	Description	Signal Type
3	Synt	synthesis of 2-layer data streams	complex


Notes/Equations

- 1. This model is used in ISDB-T 2-layer systems to multiplex 2-layer data streams into one synthetic stream.
- Each firing, LayA consumes SegmentsA×Carriers tokens; LayB consumes SegmentsB×Carriers tokens; Synt produces (SegmentsA+SegmentsB)×Carriers tokens.

References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

DTV_SynTwoLayTSP

Description: Synthesizer for 2-layer TSP into one TSP stream **Library:** DTV, Multiplex **Class:** SDFDTV_SynTwoLayTSP

Parameters

Name	Description	Default	Unit	Туре	Range
Length	number of bytes in one TSP	204		int	{204}
SegmentsA	number of segments in layer A			int	[1, 12] †
LayerA_Modulation	modulation mode for layer A: A DQPSK, A QPSK, A 16QAM, A 64QAM	A DQPSK		enum	
LayerA_Convolutional_Code	convolutional code rate for layer A: A 1/2, A 2/3, A 3/4, A 5/6, A 7/8	A 1/2		enum	
SegmentsB	number of segments in layer B	8		int	[1, 12] †
LayerB_Modulation	modulation mode for Layer B: B DQPSK, B QPSK, B 16QAM, B 64QAM	B DQPSK		enum	
LayerB_Convolutional_Code	convolutional code rate for layer B: B 1/2, B 2/3, B 3/4, B 5/6, B 7/8	B 7/8		enum	

⁺ The sum of SegmentsA and SegmentsB \leq 13.

Pin Inputs

	Pin	Name	Description	Signal	Туре
--	-----	------	-------------	--------	------

1 InA layer A input int	
-------------------------	--

2 InB layer B input int

Pin Outputs

Pin	Name	Description	Signal Type
3	output	output TSP stream comprised of 2-layer TSP streams	int

Notes/Equations

- 1. This model is used in ISDB-T 2-layer systems to synthesize a 2-layer TSP stream into one TSP stream according to the table below.
- 2. Layers A and layer B are synthesized into one TSP stream. The number of TSPs per segment in each layer is determined according to modulation mode and convolutional code rate.

The model determines the total number of TSPs in each layer by the number of TSPs

per segment and the number of segments in each layer in one OFDM frame. To increase simulation speed, the total number of TSPs in each layer is divided by the greatest common divisor, which is the greatest common divisor of the total numbers of TSPs in each layer. An example follows for mode 1.

SegmentsA=5 LayerA_Modulation= A DQPSK LayerA_Convolutional_Code= A 1/2

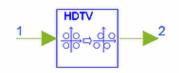
SegmentsB=7 LayerB_Modulation= B 16QAM LayerB_Convolutional_Code= B 3/4

According to the following table, the number of TSPs is 12, and 36 per segment, respectively. The total number of TSPs in each layer is 12×5 and 36×7 in one OFDM frame; the greatest common divisor is 12. After dividing, the total number of TSPs is 5 and 21, respectively. Then, the model combines $204 \times 5 \times 1$ integers in InA pin and $204 \times 3 \times 7$ integers in InB pin into the output TSP stream.

Carrier Modulation	Convolutional Code	Number of Transmitting TSPs + (Mode 1/2/3)
DQPSK, QPSK	1/2	12/24/48
n n	2/3	16/32/64
n n	3/4	18/36/72
n n	5/6	20/40/80
n n	7/8	21/42/84
16-QAM	1/2	24/48/96
n n	2/3	32/64/128
n n	3/4	36/72/144
n n	5/6	40/80/160
n n	7/8	42/84/168
64-QAM	1/2	36/72/144
n n	2/3	48/96/192
н н	3/4	54/108/216
н п	5/6	60/120/240
11 11	7/8	63/126/252

Transmitting TSPs per Segment for ISDB-T

⁺ Number of transmitting TSPs per one OFDM frame.


References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.

OFDM Components

- DTV AddFixPhase (dtv)
- DTV InsertGuard (dtv)
- DTV LoadFFTBuff (dtv)
- DTV MLEstimator (dtv)
- DTV OFDMEqualizer (dtv)
- DTV RemovePhase (dtv)

DTV_AddFixPhase

Description: Fixed phase addition to the OFDM symbol Library: DTV, OFDM Class: SDFDTV_AddFixPhase

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of input symbol	8192		int	(0,∞) †
Guard	length of guard interval	512		int	(0, Length] ++
Offset	fixed phase offset	0.25		real	(-0.5, 0.5)

⁺ Length = 2^{N} in OFDM systems; where N is a positive integer. In DVB-T systems, N=11 and 13; in ISDB-T systems, N=11, 12 and 13.

 $^{++}$ Guard = 1/32, 1/16, 1/8, and 1/4 Length in ISDB-T and DVB-T systems.

Pin Inputs

Pin	Name	Description	Signal Type			
1	input	OFDM symbol after insert guard interval process	complex			
Pin	Pin Outputs					

Pin	Name	Description	Signal Type
2	output	symbol added by a fixed phase offset	complex

Notes/Equations

1. This model adds a fixed phase offset into the OFDM symbol; it can be used as a tool for frequency synchronization models.

2. Implementation


Assume x(0), x(1), ..., x(N-1) are the transmitted symbols that are combined into an OFDM symbol. Add a fixed phase offset Φ into OFDM symbol, we can get y(0), y(1), ..., y(N-1), as follows:

 $y(i) = x(i)e^{\frac{j2\pi\Phi i}{N}}$

where Φ is the carrier phase offset value (-0.5,0.5). We add the fixed phase offset in the ±0.5 subcarriers OFDM symbol. *N* is the sum of the length of IFFT and the interval guard.

- 1. J.J. van de Beek, M. Sandell, and P.O.Borjesson, *On Synchronization in OFDM Systems Using the Cyclic Prefix*, in Proceedings of Radio Vetenskaplig Konferens (REVK'96), pp.663-667, Lulea Sweden, June 1996.
- 2. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- *3.* ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_InsertGuard

Description: Guard interval inserter **Library:** DTV, OFDM **Class:** SDFDTV_InsertGuard

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of input symbol	8192		int	(0,∞) †
Guard	length of guard interval	512		int	(0, Length] ++

⁺ Length = 2^{N} in OFDM systems; where N is a positive integer. In DVB-T systems, N=11 and 13; in ISDB-T systems, N=11, 12 and 13. ⁺⁺Guard = 1/32, 1/16, 1/8, and 1/4 Length in ISDB-T and DVB-T systems.

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal from the IFFT	complex

Pin Outputs

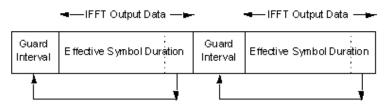
Pin	Name	Description	Signal Type
2	output	signal output after guard interval insertion	complex

Notes/Equations

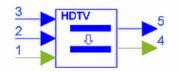
- 1. This model inserts a guard interval after the IFFT procedure.
- 2. Implementation

Assume x(0), x(1), ..., x(N-1) are the *N* symbols from IFFT. The guard interval (interval length is N_a) is inserted as follows:

 $x(-i) = x(N-i) i = 1, 2, ..., N_a$


After insertion of the guard interval, the length of the output signal is $N + N_q$, the

output signal is $x(-N_q), \dots, x(-1), x(0), x(1), \dots, x(N-1)$


Guard interval insertion is shown below.

Guard Interval Insertion

Advanced Design System 2011.01 - DTV Design Library

DTV_LoadFFTBuff

Description: Received data loader from channel to FFT buffer **Library:** DTV, OFDM **Class:** SDFDTV_LoadFFTBuff

Parameters

Name	Description	Default	Unit	Туре	Range
InLength	length of input sequence	2048		int	[0, ∞) [†]
Order	FFT points=2^Order	11		int	[1, ∞) ⁺⁺
MinDelay	min delay from 0 to InLength-1	0		int	(0, InLength]
MaxDelay	max delay from 0 to InLength-1	2047		int	[MinDelay, InLength]
Offset	offset from ML peak to symbol start point	256		int	[-MinDelay, 2 × InLength – 2 ^{Order} – MaxDelay) †††

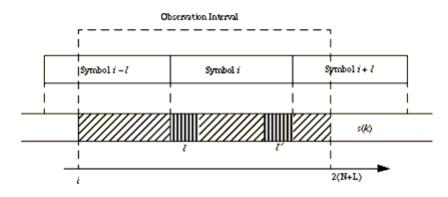
⁺ InLength = 2^{N} in OFDM systems; where N is a positive integer. N=11 and 13 in DVB-T systems; N=11, 12, and 13 in ISDB-T systems.

++ Order=11 and 13 in DVB-T systems, Order=11, 12 and 13 in ISDB-T systems. +++ Offset = 1/32, 1/16, 1/8, and 1/4 InLength in ISDB-T and DVB-T systems.

Pin Inputs

Pin	Name	Description	Signal Type
1	input	input signal from channel	complex
2	corr	ML estimation of theta for OFDM symbol synchronization	real
3	angle	phase offset corresponding to the theta	real

Pin Outputs


Pin	Name	Description	Signal Type
4	output	output signal which be used by FFT	complex
5	phase	phase offset of the current OFDM symbol	real

Notes/Equations

- This model performs OFDM symbol synchronization, determines phase offset due to frequency offset, then outputs the OFDM symbol (output data is 2^{Order}) to the FFT buffer.
- 2. Implementation

Assume 2(N+L) consecutive samples of x(k) (which can be observed in the figure below), and that these samples contain one complete (N+L) sample OFDM symbol.

Structure of OFDM Signal with Cyclically Extended Symbols, *s*(*k*)

The position of this symbol within the observed block of samples, however, is unknown as the channel delay Θ is unknown to the receiver. Define the index sets $I = [\Theta, \Theta + L - 1]$ and $I' = [\Theta + N, \Theta + N + L - 1]$ (see <u>Structure of OFDM Signal</u> with Cyclically Extended Symbols, s(k)). The I' set therefore contains the indices of data samples that are copied into the cyclic extension; the I set contains the indices of this extension. Collect the observed samples in the $2(N+L)-vector X [x(1) ... x(2(N + L))]^T$. Note that the samples in the cyclic extension and their replicas, $k \oplus I$ $\cup I'$ are pair-wise correlated, i.e., : $\forall k \oplus I$:

$$E\{x(k)x^{*}(k+m)\} = \begin{cases} \mathbf{q}^{2} + \mathbf{q}^{2} & m = 0\\ \mathbf{q}^{2}e^{j2\pi\varepsilon} & m = N\\ 0 & otherwise \end{cases}$$

where

$$\sigma_s^2 \equiv E\{|s(k)|^2\}$$

$$\sigma_n^2 \equiv E\{|n(k)|^2\},\$$

while the remaining samples $k \oplus I \cup I'$ are mutually not correlated. We now explicitly exploit this correlation property and give the simultaneous maximum likelihood (ML) estimates of Θ and ε .

The log-likelihood function for Θ and ε is the logarithm of the probability density function of the 2(N+L) observed samples in X given the arrival time Θ and carrier frequency offset ε . The ML estimation of Θ and ε is the argument maximizing this function. Under the assumption that X is a jointly Gaussian vector, the log-likelihood function can be shown to be

 $\Lambda(\boldsymbol{\theta}, \boldsymbol{\epsilon}) = 2|\gamma(\boldsymbol{\theta})|\cos(\{2\pi\boldsymbol{\epsilon} + \angle\gamma(\boldsymbol{\theta})\} - \rho\Phi(\boldsymbol{\theta}))$

where \angle_{m+L-1}^{\prime} denotes the argument of a complex number,

$$\gamma(m) \equiv \sum_{k=m} x(k) x^*(k+N)$$

m + l = 1

and

$$\varepsilon(m) \equiv \sum_{k=1}^{\infty} |x(k)|^2 + |x(k+N)|^2$$

are correction and energy terms, and

$$\rho \equiv \frac{\mathbf{q}^2}{\mathbf{q}^2 + \mathbf{q}_i^2}$$

is the magnitude of the correction coefficient between x(k) and x(k+N). The simultaneous ML estimation of Θ and ε becomes

$$\hat{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \{2|\gamma(\boldsymbol{\theta})| - \rho \Phi(\boldsymbol{\theta})\}$$

$$\hat{\boldsymbol{\varepsilon}}_{ML} = -\frac{1}{2\pi} \angle \gamma(\hat{\boldsymbol{\theta}}_{ML})$$

The processing is done continuously and two signals are generated.

 $\hat{\theta}_{ML}$

and

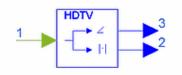
 ϵ_{ML}

are the start point and the phase offset in the current OFDM symbol, respectively. In this model, two signals $2|\gamma~(\Theta)-\rho~\Phi~(\Theta)$ and its corresponding phase offset signal

$$\boldsymbol{\varepsilon} = -\frac{1}{2\pi} \boldsymbol{\angle} \boldsymbol{\gamma}(\boldsymbol{\theta})$$

were generated in the $DTV_MLEstimator$ (dtv) model; these two signals are input pins (corr and angle) of this model.

This model determines the maximum value θ_{ML} of the corr pin in the range [MinDelay, MaxDelay], then determines the current


carrier frequency offset ϵ_{ML}

corresponding to $\hat{\theta}_{ML}$; then, according to time $\hat{\theta}_{ML}$, determines the N points signal to the output pin.

References

- 1. J. J. van de Beek, M. Sandell and P. O. Borjesson, *On Synchronization in OFDM Systems Using the Cyclic Prefix in Proceedings of Radio Vetenskaplig Konferens* (REVK'96), pp.663-667, Lulea, Sweden, June 1996.
- 2. M. Sandell, J. J. van de Beek and P. O. Borjesson, *Timing and Frequency Synchronization in OFDM Systems Using the Cyclic Prefix in Proceedings of International Symmposium on Synchronization*, pp.16-19, Essen, Germany, December 1995.
- 3. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 4. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_MLEstimator

Description: ML Estimation and Synchronization of OFDM Symbol Library: DTV, OFDM Class: SDFDTV_MLEstimator

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of OFDM symbol	8192		int	(0, ∞) †
Guard	length of guard interval	256		int	[0, Length] ++
	scale of the square term in ML algorithm	0.95		real	(0.0, 1.0)

⁺ Length = 2^{N} in OFDM systems; where N is a positive integer. In DVB-T systems, N=11 and 13; in ISDB-T systems, N=11, 12 and 13.

++ Guard = 1/32, 1/16, 1/8, and 1/4 Length in ISDB-T and DVB-T systems.

Pin Inputs

Pin	Name	Description	Signal Type
1	input	input signal from channel	complex

Pin Outputs

Pin	Name Description S		Signal Type
2	corr	ML estimation of theta for OFDM symbol synchronization	real
3	angle	phase offset corresponding to the theta	real

Notes/Equations

- 1. This model calculates parameters for simultaneous ML estimation of θ and ε that are used in timing and frequency synchronization in OFDM systems. Outputs of this model will be used by *DTV_LoadFFTBuff* (dtv).
- 2. Implementation

 θ and ϵ are defined in $DTV_LoadFFTBuff$ (dtv). The log-likelihood function is: $\Lambda(\theta,\epsilon) = 2|\gamma(\theta)|\cos(\{2\pi\epsilon + \angle\gamma(\theta)\} - \rho\Phi(\theta))$

where \angle_{m+L-1} denotes the argument of a complex number;

$$\gamma(m) \equiv \sum_{\substack{k \ \equiv \ m \\ m \ \equiv \ m }} x(k) x^*(k+N)$$
$$\Phi(m) \equiv \sum_{\substack{k \ = \ m \\ k \ = \ m }} |x(k)|^2 + |x(k+N)|^2$$

are correction and energy terms, and

$$\rho \equiv \frac{\mathbf{q}^2}{\mathbf{q}^2 + \mathbf{q}^2}$$

is the magnitude of the correction coefficient between x(k) and x(k+N). The simultaneous ML-estimation of θ and ε becomes

$$\begin{split} \hat{\theta}_{ML} &= \arg \max_{\boldsymbol{\theta}} \{2|\gamma(\boldsymbol{\theta})| - \rho \Phi(\boldsymbol{\theta})\} \\ \hat{\varepsilon}_{ML} &= -\frac{1}{2\pi} \angle \gamma(\hat{\theta}_{ML}) \end{split}$$

In order to determine the above two values for the OFDM symbol, two signals are generated: $2|\gamma(\theta)| - \rho \phi(\theta)$ and its corresponding phase offset signal

$$\varepsilon = -\frac{1}{2\pi} \angle \gamma(\theta)$$

The output of the corr pin is the value of $2|\gamma(\theta)| - \rho \epsilon(\theta)$ and the output of the angle pin is the value of

$$\varepsilon = -\frac{1}{2\pi} \angle \gamma(\theta)$$

References

- 1. J. J. van de Beek, M. Sandell and P. O. Borjesson, *On Synchronization in OFDM Systems Using the Cyclic Prefix in Proceedings of Radio Vetenskaplig Konferens* (REVK'96), pp.663-667, Lulea, Sweden, June 1996.
- 2. M. Sandell, J. J. van de Beek and P. O. Borjesson, *Timing and Frequency Synchronization in OFDM Systems Using the Cyclic Prefix in Proceedings of International Symmposium on Synchronization*, pp.16-19, Essen, Germany, December 1995.
- 3. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 4. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_OFDMEqualizer

Description: OFDM equalizer by the channel estimation **Library:** DTV, OFDM **Class:** SDFDTV_OFDMEqualizer

Parameters

Name	Description	Default	Unit	Туре	Range
Carriers	number of active carriers in one OFDM symbol	1705		int	(0, ∞) †

⁺ In ISDB-T systems: Carriers = $n \times 108$ in mode 1, $n \times 216$ in mode 2, or $n \times 384$ in mode 3, where *n* is the number of segments. In DVB-T systems: Carriers = 1705 in 2k mode, 6817 in 8k mode, or 3409 in 4k mode.

Pin Inputs

Pin	Name	Description	Signal Type
1	input	data in the active carriers in OFDM symbol	complex
2	Coef	frequency channel impulse response(CIR) estimation	complex

Pin Outputs

Pin	Name	Description	Signal Type
3	output	output data after channel equalization	complex

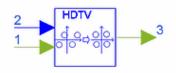
Notes/Equations

- 1. The model performs channel equalization by the channel estimation in each of the active carriers.
- 2. Implementation

DTV_ChEstimator (dtv) and *DTV_DVBChEstimator* (dtv) models provide channel estimation and received signal in each active carrier. The OFDM channel equalization algorithm is:

 $a(i) = \frac{x(i)}{h(i)}$

where h(i) is the channel estimation, x(i) is the received signal in active carriers, and a(i) is the equalized output signal.


References

1. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);

Advanced Design System 2011.01 - DTV Design Library

Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

DTV_RemovePhase

Description: Compensator for phase offset due to carrier frequency offset **Library:** DTV, OFDM **Class:** SDFDTV_RemovePhase

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of input symbol	8192		int	(0, ∞) †

⁺ Length = 2^{N} in OFDM systems; where N is a positive integer. In DVB-T systems, N=11 and 13; in ISDB-T systems, N=11, 12 and 13.

Pin Inputs

Pin	Name	Description	Signal Type
1	input	signal from the OFDM symbol after OFDM symbol synchronization	complex
2	phase	phase offset due to the carrier frequency offset	real

Pin Outputs

Pin	Name	Description	Signal Type
3	output	OFDM signal after removed the phase offset	complex

Notes/Equations

- 1. This model removes the random phase offset due to carrier frequency offset in the OFDM symbol before OFDM channel estimation.
- 2. Implementation

Assume x(0), x(1), ..., x(N-1) are the received signal after OFDM synchronization. The phase Φ is the detected phase offset due to the carrier frequency offset in $DTV_LoadFFTBuff$ (dtv) model. The phase removed OFDM signal y(0), y(1), ..., y(N-1) is:

$$y(i) = x(i)e^{\frac{j2\pi\Phi i}{N}}$$

References

1. J.J. van de Beek, M. Sandell, and P.O.Borjesson, *On Synchronization in OFDM Systems Using the Cyclic Prefix, in Proceedings of Radio Vetenskaplig Konferens* (REVK'96), pp.663-667, Lulea Sweden, June 1996 Advanced Design System 2011.01 - DTV Design Library

- 2. ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T); Specification of Channel Coding, Framing Structure and Modulation, Sept.1998.
- 3. ETSI, Digital Video Broadcasting (DVB); *Framing structure, channel coding and modulation for digital terrestrial television*. EN300 744 v1.2.1, European Telecommunication Standard, July 1999.

Test Components for DTV Design Library

- DTV BER (dtv)
- DTV PowerMeasure (dtv)

DTV_BER

Description: Bit error rate for ISDB-T and DVB-T **Library:** DTV, Test **Class:** SDFDTV_BER

Parameters

Name	Description	Default	Unit	Туре	Range
Length	length of input byte block	188		int	[1,∞)
Delay	delay of byte blocks	512		int	[0,∞)

Pin Inputs

Pin	Name	Description	Signal Type
1	test	test input bit	int
2	ref	reference input bit	int

Pin Outputs

Pin	Name	Description	Signal Type
3	ber	bit error rate	real

Notes/Equations

- This model measures the input signal bit error rate. Each firing, 1 token at pin ber is produced when Length×8 tokens are consumed (note that Length is bytes, while test and ref are bits).
- 2. If input test bit is t_i , input reference bit is r_i , the model calculates the error rate after

Delay according to the following example.

```
count=0;

err =0;

rate =0;

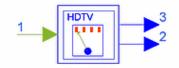
if (count>Delay) {

for (i=0;i<Length × 8;i++) {

t_i = test%i;

r_i = ref%i;

t_i = t_i &1;


r_i = r_i &1;

if (t_i != r_i)

err = err+1;
```

```
}
}
count++;
if (count>Delay)
rate = err/((count-Delay) × length × 8);
BER%(0) <<rate;</pre>
```

DTV_PowerMeasure

Description: Average power measurement **Library:** DTV, Test **Class:** SDFDTV_PowerMeasure

Parameters

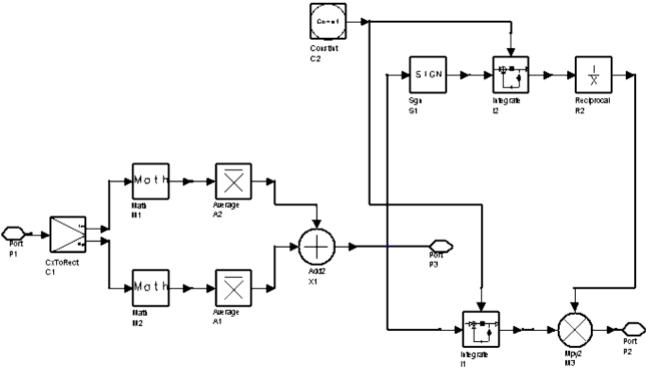
Name	Description	Default	Symbol	Unit	Туре	Range
BlockSize	number of particles in a block	16	m		int	[1,∞)

Pin Inputs

Pin Name	Description	Signal	Туре
----------	-------------	--------	------

1 input input signal real

Pin Outputs


Pin	Name	Description	Signal Type
2	Ave_P	average power of all input signals	real
3	B_P	average power of input signals in a block	real

Notes/Equations

1. This subnetwork model measures the average power of the input signals. The schematic for this subnetwork is shown below.

DTV_PowerMeasure Schematic

Advanced Design System 2011.01 - DTV Design Library

2. Each firing, 1 token at B_P and Avg_P are produced when m input tokens are consumed.

If input signal s(t) = x(t) + jy(t), average signal power

$$P = \int_{a}^{b} (x^2(t) + y^2(t))dt$$

for discrete signals

$$P = \frac{\sum_{n=a}^{a=a} (x^2(n) + y^2(n))}{b-a}$$

For B_P out, b - a = m; for Avg_P, a = 0, b = current input points.